Эти природные объекты всем нам очень хорошо известны; более того, никакой другой объект не иллюстрирует столь же доступно идею фигуры, содержащей большое количество элементов различного линейного масштаба. К сожалению, деревья оказываются более сложными конструкциями, чем это может представиться на первый взгляд. Мы не рассматривали их раньше из-за одного простого обстоятельства, упомянутого в предыдущей главе: деревья не могут быть самоподобными. Самое большее, на что можно рассчитывать – это то, что самоподобие сохраняется на уровне концов ветвей; таким допущением мы и будем руководствоваться в этой главе. В дополнение к фрактальной размерности
ДИАМЕТРИЧЕСКИЙ ПОКАЗАТЕЛЬ
Леонардо да Винчи пишет в своих «Заметках» (заметка № 394): «Совокупная толщина всех ветвей дерева на любой высоте равна толщине ствола (ниже их)». Формальное выражение выглядит следующим образом: диаметры ветвей настоящего дерева до и после разветвления
удовлетворяют соотношению
где
Иными словами, во всех случаях, когда выполняется вышеприведенное соотношение, величина
Параразмерность.
Во «Фракталах» 1977 г. я называл показательДЕРЕВО БРОНХОВ В ЛЕГКИХ
Первый пример: деление воздушных трубок в легких человека во всех практических отношениях самоподобно, причем
Внутреннюю структуру легкого вряд ли можно назвать хорошо знакомой широкому кругу людей, поэтому было бы поучительно вставить в этом месте фотографию реального легкого (такие фотографии можно найти, например, в [585] или в [84]), однако я установил для себя правило ограничиться в данном эссе моделями (и это, пожалуй, единственный случай, когда я сожалею об этом своем решении) .Значит, придется обойтись словесным описанием. Представьте себе, что мы заполнили все бронхи и бронхиолы легкого жидкой пластмассой, а после того, как пластмасса затвердела, удалили ткани. В результате мы получим чрезвычайно разветвленное дерево, которое заполняет легкое с такой густотой, однородностью и непроницаемостью для взгляда, какой не достигается ни одно настоящее дерево. Между двумя первыми разветвлениями, которые нас пока не касаются, и тремя последними, ведущими к альвеолам (о которых мы говорили в главе 12), имеется еще пятнадцать последовательных разветвлений, происходящих с поразительной правильностью.
По данным Вайбеля [585], отрезки бронхов в первом приближении подобны друг другу, и