Читаем Фрактальная геометрия природы полностью

Эти природные объекты всем нам очень хорошо известны; более того, никакой другой объект не иллюстрирует столь же доступно идею фигуры, содержащей большое количество элементов различного линейного масштаба. К сожалению, деревья оказываются более сложными конструкциями, чем это может представиться на первый взгляд. Мы не рассматривали их раньше из-за одного простого обстоятельства, упомянутого в предыдущей главе: деревья не могут быть самоподобными. Самое большее, на что можно рассчитывать – это то, что самоподобие сохраняется на уровне концов ветвей; таким допущением мы и будем руководствоваться в этой главе. В дополнение к фрактальной размерности D множества концов ветвей, деревья характеризуются еще одним параметром, который называется диаметрическим показателем и обозначается буквой Δ. Когда дерево самоподобно с остатком, как в главе 16, показатель Δ совпадает с размерностью D множества концов ветвей. В противном случае Δ и D оказываются независимыми друг от друга характеристиками, и пред нами предстает образчик феномена, называемого биологами «аллометрией». Нам встретятся случаи как с Δ=D, так и с Δ.

ДИАМЕТРИЧЕСКИЙ ПОКАЗАТЕЛЬΔ

Леонардо да Винчи пишет в своих «Заметках» (заметка № 394): «Совокупная толщина всех ветвей дерева на любой высоте равна толщине ствола (ниже их)». Формальное выражение выглядит следующим образом: диаметры ветвей настоящего дерева до и после разветвления (d, d1 и d2)

удовлетворяют соотношению

dΔ=d1Δ+d2Δ,

где Δ=2. Смысл этого выражения таков: если принимать во внимание толщину ветвей, настоящие деревья не являются самоподобными деревьями с почти заполняющей пространство корой. В самом деле, самоподобие требует выполнения равенства Δ=D, а размерность D почти заполняющей пространство структуры должна быть близка к E=3.

Иными словами, во всех случаях, когда выполняется вышеприведенное соотношение, величина Δ представляет собой новый параметр в дополнение к размерности D; мы будем называть этот новый параметр диаметрическим показателем. Его рассматривали очень многие люди – в большинстве случаев независимо друг от друга – в этом можно убедиться, взглянув хотя бы на список литературы в [568]. В этой главе показано, что для бронхов Δ~3. Показатель Δ дерева артерий равен приблизительно 2, 7, а для настоящих деревьев он близок к значению, указанному Леонардо, Δ=2. Ширина рек также регулируется показателем Δ=2. Кроме того, мы рассмотрим здесь некоторые физические, физиологические и геометрические аспекты величины Δ.

Параразмерность. Во «Фракталах» 1977 г. я называл показатель Δ паразмерностью (от греческого παρα «рядом, около»), но я больше не настаиваю на употреблении этого термина. Функции величины Δ вообще весьма туманны: в одних случаях она является размерностью, в других – нет. Аналогичное поведение демонстрирует показатель в [29]; см. также главу 39.

ДЕРЕВО БРОНХОВ В ЛЕГКИХ

Первый пример: деление воздушных трубок в легких человека во всех практических отношениях самоподобно, причем Δ=D, а D~E=3.

Внутреннюю структуру легкого вряд ли можно назвать хорошо знакомой широкому кругу людей, поэтому было бы поучительно вставить в этом месте фотографию реального легкого (такие фотографии можно найти, например, в [585] или в [84]), однако я установил для себя правило ограничиться в данном эссе моделями (и это, пожалуй, единственный случай, когда я сожалею об этом своем решении) .Значит, придется обойтись словесным описанием. Представьте себе, что мы заполнили все бронхи и бронхиолы легкого жидкой пластмассой, а после того, как пластмасса затвердела, удалили ткани. В результате мы получим чрезвычайно разветвленное дерево, которое заполняет легкое с такой густотой, однородностью и непроницаемостью для взгляда, какой не достигается ни одно настоящее дерево. Между двумя первыми разветвлениями, которые нас пока не касаются, и тремя последними, ведущими к альвеолам (о которых мы говорили в главе 12), имеется еще пятнадцать последовательных разветвлений, происходящих с поразительной правильностью.

По данным Вайбеля [585], отрезки бронхов в первом приближении подобны друг другу, и Δ~3. Воздушный поток представляет собой конкретную величину, разделяющуюся между разветвляющимися бронхами, и поскольку воздушный поток в трубе равен площади сечения трубы, умноженной на скорость движения воздуха, получается, что скорость изменяется пропорционально dΔ−2: при вхождении в более тонкие бронхи воздух замедляется.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература