Здравый смысл в геометрии никогда не отрицал того, что он нуждается в помощи логики, невзирая на ее странные и запутанные методы. С чего бы логике опять пытаться от него ускользнуть?
Словом, ни в коем случае нельзя полагаться на то, что типичный математик считает совместимым со здравым смыслом; никак невозможно позволять какому бы то ни было здравому смыслу руководить нами при построении той или иной модели; и вообще, математика слишком важна, чтобы можно было отдать ее на откуп фанатикам от логики.
16 ДЕРЕВЬЯ. СКЕЙЛИНГОВЫЕ ОСТАТКИ. НЕОДНОРОДНЫЕ ФРАКТАЛЫ
В настоящей главе обсуждается нитевидные фрактальные деревья и другие почти масштабно-инвариантные фракталы, т. е. масштабно-инвариантные за исключением пренебрежимо малого во фрактальном смысле остатка. Эти фракталы оказываются неоднородными в том смысле, что для разных частей таких множеств размерности
ПОНЯТИЕ О МНОЖЕСТВЕ СКЕЙЛИНГОВЫХ ОСТАТКОВ
Стандартные интервалы.
Полуоткрытый интервал ]0,1], включающий в себя правую концевую точку и не включающий левую, является масштабно-инвариантным, так как он состоит изПриведенный пример может ввести нас в искушение рассматривать все остаточные члены как порожденные излишней педантичностью усложнения, никак не влияющие на результат масштабирования. Однако в аналогичных примерах, относящихся к фракталам, которые я называю неоднородными фракталами, остаток может приобрести неожиданно большую значимость. Неоднородный фрактал – это сумма (или разность) множеств с различной фрактальной и топологической размерностью. Ни одно из этих множеств нельзя полностью исключить из рассмотрения, даже если они пренебрежимо малы как во фрактальном, так и в топологическом смысле. И между ними часто возникают конфликты с весьма интересными и значительными последствиями.
Канторовы пылевидные множества и изолированные точки.
Построим канторову пыль, разделив интервал [0,1] наПри обобщении на пространство
ФРАКТАЛЬНЫЕ ДЕРЕВЬЯ, ОСТАТОЧНЫЕ ЧЛЕНЫ КОТОРЫХ ПРЕДСТАВЛЯЮТ СОБОЙ ИНТЕРВАЛЫ
На рис. 223 представлены зонтичные деревья с бесконечно тонкими стволами. К жизни они совершенно не приспособлены, и в главе 17 мы постараемся несколько увеличить их адекватность в качестве моделей реальных растений. И все же даже эти «остовы» деревьев представляют большой интерес для многих областей математики. Топологу все они показались бы одинаковыми, так как, на его взгляд, любое дерево состоит из бесконечно упругих нитей, и наши деревья также можно растягивать, или сжимать до тех пор, пока они не совпадут друг с другом. Однако эти деревья все-таки различаются и сточки зрения здравого смысла, и как фракталы.
Концы ветвей.
Дерево представляет собой сумму двух множеств (ветвей и концов ветвей), размерности которых уживаются друг с другом очень интересным способом. Более простой для изучения частью дерева является множество концов ветвей – фрактальная пыль, похожая на многие другие известные нам пылевидные множества. Она масштабно-инвариантна: