В этом легко убедиться. Начнем квадратичное зондирование с 0-й ячейки хеш-таблицы, содержащей 11 ячеек, и посмотрим, какие ячейки будут посещены при этом. Последовательность посещений выглядит следующим образом: 0, 1, 5, 3, 8, после чего зондирование снова начинается с ячейки 0. Мы никогда не посещаем ячейки 2, 4, 7, 9. По-моему, одной этой проблемы достаточно, чтобы в любом случае избегать применения квадратичного зондирования, хотя ее можно было бы избегнуть, не позволяя хеш-таблице заполняться более чем на половину.
Псевдослучайное зондирование
Следующая возможность - применение псевдослучайного зондирования (pseudorandom probing). Этот алгоритм требует использования генератора случайных чисел, который можно сбрасывать в определенный момент. Применительно к рассматриваемому алгоритму, из числа рассмотренных в 6 главе генераторов наиболее подошел бы минимальный стандартный генератор случайных чисел, поскольку его состояние однозначно определяется одним характеристическим значением - начальным числом. Алгоритм определяет следующую последовательность действий. Выполните хеширование ключа для получения хеш-значения, но не выполняйте деление по модулю на размер таблицы. Установите начальное значение генератора равным этому хеш-значению. Сгенерируйте первое случайное число с плавающей точкой (в диапазоне от 0 до 1) и умножьте его на размер таблицы для получения целочисленного значения в диапазоне от 0 до размера таблицы минус 1. Эта точка будет точкой первого зондирования. Если ячейка занята, сгенерируйте следующее случайное число, умножьте его на размер таблицы и снова выполните зондирование. Продолжайте выполнять упомянутые действия до тех пор, пока не найдете свободную ячейку. Поскольку при одном и том же заданном начальном значении генератор случайных чисел будет генерировать одни и те же случайные числа в одной и той же последовательности, для одного и того же хеш-значения всегда будет создаваться одна и та же последовательность зондирования.
Все это звучит достаточно обнадеживающе. Ценой ряда сложных и продолжительных вычислений, необходимых для получения случайного числа, этот алгоритм предотвратит образование кластеров, возникающих в результате линейного зондирования. Однако при этом возникает одна небольшая проблема: нет никакой гарантии, что рандомизированная последовательность обеспечит посещение каждой ячейки таблицы.
Нельзя не согласиться, что вероятность постоянного пропуска пустой ячейки достаточно низка, но это возможно, если таблица заполнена в значительной степени. Еще хуже то, что последовательность зондирований может стать очень большой до попадания в пустую ячейку. Следовательно, имеет смысл обеспечить невозможность значительного заполнения таблицы и изменение ее размера, если это происходит. С этого момента можно также продолжить использовать линейное зондирование с применением автоматически расширяемой хеш-таблицы. Это проще и быстрее.
Двойное хеширование
В заключение рассмотрим двойное хеширование (double hashing). На практике эта схема оказывается наиболее удачной из всех альтернативных схем с открытой адресацией. Итак, выполним хеширование ключа элемента в значение индекса. Назовем его h(_1_). Выполним зондирование этой ячейки. Если она занята, выполним хеширование ключа путем применения совершенно иного и независимого алгоритма хеширования для получения другого значения индекса. Назовем его h(_2_). Выполним зондирование ячейки h(_1_) + h(_2_). Если она занята, выполним зондирование ячейки h(_1_) + 2h(_2_), затем h(_1_) + 3h(_2_) и так далее (понятно, что все вычисления выполняются с делением по модулю на размер таблицы). Обоснование этого алгоритма следующее: если первая функция хеширования для двух ключей генерирует один и тот же индекс, очень маловероятно, что вторая функция хеширования сгенерирует для них то же самое значение. Таким образом, два ключа, которые первоначально хешируются в одну и ту же ячейку, затем не будут соответствовать одной и той же последовательности зондирования. В результате мы можем ликвидировать "неизбежную" кластеризацию, сопряженную с линейным зондированием. Если размер таблицы равен простому числу, последовательность зондирования обеспечит посещение всех ячеек, прежде чем начнется сначала, что позволит избежать проблем, связных с квадратичным и псевдослучайным зондированием. Единственная реальная проблема, возникающая при использовании двойного хеширования, - если не принимать во внимание необходимость вычисления дополнительного хеш-значения - состоит в том, что вторая функция хеширования по понятным причинам никогда не должна возвращать значение, равное 0. На практике эту проблему легко решить, выполняя деление по модулю на размер таблицы минус 1 (в результате мы получим значение в диапазоне от 0 до TableSize-2), а затем добавляя к результату единицу.