Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

Вторая возможность заключается в использовании групп переполнения. В этом случае хеш-таблица содержит дополнительную группу, которая не используется при обычном применении хеш-таблицы. Эту группу называют группой переполнения (overflow bucket). Если при вставке элемента в группе места под него не оказывается, мы ищем пустой элемент в группе переполнения и вставляем элемент туда. Таким образом, группа переполнения содержит элементы переполнения всех обычных групп. Если сама группа переполнения заполняется, мы просто выделяем еще одну группу и продолжаем выполнять описанные операции. Поиск элемента в этой структуре данных предполагает просмотр каждого элемента в группе, в которую был хеширован ключ, и, если она заполнена, - просмотр каждого элемента в каждой группе переполнения, пока не будет найден пустой элемент. Удаление элемента из такой хеш-таблицы настолько не эффективно, что может оказаться вообще невозможным. Единственный целесообразный метод удаления - пометка элементов как удаленных. В противном случае, при необходимости удалить элемент из правильно заполненной группы придется повторно вставить каждый элемент, который присутствует в группах переполнения.

Так зачем же вообще рассматривать группирование? Что ж, вероятно, это лучшая структура данных для хеш-таблиц, хранящихся на диске.

<p>Хеш-таблицы на диске</p>

Контроллеры для таких устройств постоянного хранения данных, как жесткие и гибкие диски, дисководы Iomega Zip и ленточные накопители разработаны для поблочного считывания и записи данных. Обычно размер этих блоков равен какой-то степени двойки, например, 512, 1024 или 4096 байт. Поскольку контроллер должен выполнить считывание всего блока даже в том случае, когда требуется всего несколько байт, имеет смысл попытаться извлечь выгоду из подобного поведения.

Предположим, что требуется создать приложение, в котором используется большое количество записей, хранящихся на диске. Записи должны быть доступны в произвольном порядке по ключу. При этом каждая запись имеет отдельный уникальный строковый ключ. Это - идеальное применение для хеш-таблицы, однако записи столь многочисленны и велики, что невозможно выполнить их одновременное считывание в память. Действительно, делать это не имеет смысла, поскольку можно предположить, что большинство из них не будет требоваться в ходе любого отдельного сеанса работы программы.

Примером такого применения служит система пункта продажи в большом продуктовом супермаркете. В магазине могут продаваться сотни тысяч различных наименований товаров, из которых средний покупатель приобретает, скажем, не больше сотни (а то и десятка). Это идеальное применение для хеш-таблицы: каждый товар в магазине известен по его всемирному шифру продукта (UPC -Universal Product Code), т.е. 12-значному строковому значению, которое представляет собой уникальный ключ каждого товара. С учетом этого, приложение в кассовом пункте использует сканированный универсальный код товара с целью его хеширования в хеш-таблицу, а затем в запись, соответствующую товару.

Однако обратите внимание, что хранящаяся на диске хеш-таблица подходит только для обработки типа извлечения данных: получив ключ, она возвращает запись. Подобно своему аналогу, хранящемуся в памяти, хеш-таблица на диске не подходит для последовательного извлечения записей.

Прежде всего, создадим файл данных, состоящий из множества записей одинакового размера, каждая из которых описывает отдельный элемент. Естественно, для этого мы будем использовать класс TtdRecordFile, описанный в главе 2.

Файл индексов - это, по сути дела, второй файл базы данных хеш-информации. Как и в предыдущем случае, нам не нужно считывать в память весь файл индексов. Например, если бы каждый ключ содержал 10 цифр, а связанный с каждым ключом номер записи имел бы длину, равную 4 байтам, для хранения одного ключа требовалось бы 15 байт (исходя из предположения, что ключ содержит либо ноль в качестве символа-ограничителя, либо байт-префикс, определяющий его длину). Если бы хеш-таблица содержала 100 000 элементов, то для хранения ее индексов в памяти потребовалось бы минимум 1 500 000 байт. Разумеется, мы еще и выделяем дополнительную память под хранение строк ключей хеш-таблицы в куче, что приведет к еще большим накладным расходам (например, в 32-разрядной системе каждая строка кучи содержит три дополнительных символа типа longint). Значительно целесообразнее было бы считывать фрагменты индекса, когда в них возникает необходимость.

Применим метод группирования. В индексе хеш-таблицы мы используем группы фиксированного размера, чтобы при наличии ключа его можно было хешировать с целью получения требуемого номера группы, выполнить его считывание из файла индекса, а затем выполнить поиск требуемого ключа в группе. Эта методика выглядит достаточно простой, но, естественно, при этом необходимо предусмотреть действия на случай переполнения группы.

<p>Расширяемое хеширование</p>
Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT