Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

Естественно, первым шагом является поиск элемента в дереве с применением стандартного алгоритма. Если найти элемент не удастся, придется как-то сообщить о неудаче. В случае обнаружения элемента, поиск может быть прерван в узле одного из трех типов, как это имеет место в стандартном бинарном дереве.

Первый тип узла - узел без дочерних узлов, обе дочерние связи которого являются нулевыми. Иначе говоря, лист. Чтобы удалить узел этого типа, мы просто разрываем его связь с родительским узлом и удаляем его. Это удаление не нарушает порядок узлов в дереве - в конце концов, узел был листом и не имел дочерних узлов.

Второй тип узла - узел только с одним дочерним узлом. В случае стандартного бинарного дерева мы просто перемещаем дочерний узел на один уровень вверх, чтобы заменить удаляемый узел. Можно ли это же сделать в данном случае? Рассмотрим родительский узел узла, который должен быть удален. Удаленный узел является либо левым дочерним узлом (в этом случае его ключ меньше ключа родительского узла), либо правым дочерним узлом (в этом случае его ключ больше ключа родительского узла). Не только этот узел, но и все дочерние, "внучатые" и так далее узлы удаленного узла обладают тем же свойством. Все они будут либо меньше родительского узла, либо больше. Таким образом, до тех пор, пока речь идет о родительском узле, при замене узла одним из его дочерних узлов свойство упорядочения будет сохраняться. Если дочерний узел имеет свои дочерние узлы, это перемещение не сказывается на них или на их порядке. Следовательно, в случае дерева бинарного поиска мы по-прежнему можем выполнить эту простую операцию.

Третий тип узла - узел с двумя дочерними узлами. В стандартном дереве бинарного поиска мы считали попытку удаления узла этого типа ошибкой. Удаление не могло быть выполнено, поскольку не существовало никакого общего способа выполнения операции удаления, который имел бы смысл. В случае дерева бинарного поиска это не так: в данном случае можно воспользоваться свойством упорядочения дерева бинарного поиска.

Ситуация выглядит следующим образом: нам нужно удалить определенный узел (т.е. элемент в этом узле), но он имеет два дочерних узла (каждый из которых имеет собственные дочерние узлы). Алгоритм удаления несколько сложен, поэтому вначале он будет описан словесно, а затем будет показано, как он работает. На практике мы ищем узел, содержащий наибольший элемент, который меньше только того, который мы пытаемся удалить. Затем мы меняем местами элементы в этих двух узлах. И, наконец, мы удаляем второй узел. Он всегда будет соответствовать одному из ранее рассмотренных случаев удаления.

Первый шаг заключается в отыскании наибольшего элемента, меньшего того элемента, который мы пытаемся удалить. Понятно, что он находится в левом дочернем дереве (все элементы этого дерева меньше удаляемого элемента). Кроме того, он является наибольшим элементом этого дерева. Иначе говоря, все остальные элементы, которые могут находиться в левом дочернем дереве, меньше этого элемента. В действительности все элементы в правом дочернем дереве больше этого выбранного элемента (поскольку он меньше элемента, который должен быть удален, а этот элемент, в свою очередь, меньше всех элементов в правом дочернем дереве). Следовательно, он вполне может заменить удаляемый элемент, и это действие не нарушит порядок элементов в дереве.

Но как насчет узла, с позиции которого он был перемещен, и который теперь нужно удалить? В отношении этого конкретного узла важно уяснить, что он не имеет никакого правого дочернего узла. Если бы он имел правый дочерний узел, элемент в дочернем узле должен был бы быть больше элемента, с которым мы поменяли его местами, и, следовательно, первоначально выбранный элемент не мог бы быть наибольшим. Он может иметь левый дочерний узел, но независимо от этого мы знаем, как удалить узел, имеющий не более одного дочернего узла.

При этом все еще остается проблема обнаружения наибольшего элемента, который меньше исходного, предназначенного для удаления. По существу, мы выполняем перемещение по дереву. Начиная с элемента, который нужно удалить, мы переходим к левой дочерней связи. С этого места мы продолжаем перемещаться по правым дочерним связям до тех пор, пока не доберемся до узла, не имеющего никакой правой дочерней связи. Этот элемент гарантированно содержит наибольший элемент, меньший только того элемента, который мы пытаемся удалить.

Обратите также внимание, что удаление, как и вставка, может приводить к созданию вырожденного дерева. Эту проблему решают алгоритмы балансировки, которые мы рассмотрим при ознакомлении с красно-черным вариантом дерева бинарного поиска.

Листинг 8.15. Удаление из дерева бинарного поиска

function TtdBinarySearchTree.bstFindNodeToDelete(aItem : pointer)

: PtdBinTreeNode;

var

Walker : PtdBinTreeNode;

Node : PtdBinTreeNode;

Temp : pointer;

ChildType : TtdChildType;

begin

{попытаться найти элемент; если элемент не найден, сгенерировать признак ошибки}

if not bstFindItem(aItem, Node, ChildType) then

Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT