Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

if (Result <> nil) then

Exit;

end;

if (aNode^.btChild[ctRight] <> nil) then begin

Result := btRecPostOrder(aNode^.btChild[ctRight],

aAction, aExtraData);

if (Result <> nil) then

Exit;

end;

StopNow := false;

aAction(aNode^.btData, aExtraData, StopNow);

if StopNow then

Result :=aNode;

end;

function TtdBinaryTree.btRecPreOrder(aNode : PtdBinTreeNode;

aAction : TtdVisitProc; aExtraData : pointer): PtdBinTreeNode;

var

StopNow : boolean;

begin

Result := nil;

StopNow := false;

aAction(aNode^.btData, aExtraData, StopNow);

if StopNow then begin

Result :=aNode;

Exit;

end;

if (aNode^.btChild[ctLeft] <> nil) then begin

Result := btRecPreOrder(aNode^.btChild[ctLeft], aAction, aExtraData);

if (Result <> nil) then

Exit;

end;

if (aNode^.btChild[ctRight]<> nil) then begin

Result := btRecPreOrder(aNode^.btChild[ctRight], aAction, aExtraData);

end;

end;

function TtdBinaryTree.Traverse(aMode : TtdTraversalMode;

aAction : TtdVisitProc;

aExtraData : pointer;

aUseRecursion : boolean): PtdBinTreeNode;

var

RootNode : PtdBinTreeNode;

begin

Result := nil;

RootNode := FHead^.btChild[ctLeft];

if (RootNode <> nil) then begin

case aMode of

tmPreOrder :

if aUseRecursion then

Result := btRecPreOrder(RootNode, aAction, aExtraData) else

Result := btNoRecPreOrder(aAction, aExtraData);

tmlnOrder :

if aUseRecursion then

Result :=btRecInOrder(RootNode, aAction, aExtraData) else

Result := btNoRecInOrder(aAction, aExtraData);

tmPostOrder :

if aUseRecursion then

Result := btRecPostOrder(RootNode, aAction, aExtraData) else

Result := btNoRecPostOrder(aAction, aExtraData);

tmLevelOrder : Result :=btLevelOrder(aAction, aExtraData);

end;

end;

end;

Как видно из кода внутренних рекурсивных процедур, возможность прекращения обхода в любой момент времени делает код несколько менее читабельным и более сложным.

Исходный код класса TtdBinaryTree можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDBinTre.pas.

<p>Деревья бинарного поиска</p>

Хотя бинарные деревья являются структурами данных, которые представляют интерес и сами по себе, на практике в основном используют бинарные деревья, содержащие элементы в сортированном виде. Такие бинарные деревья называют деревьями бинарного поиска (binary search tree).

В дереве бинарного поиска каждый узел имеет ключ. (В деревьях бинарного поиска, которые будут построены в этой главе, считается, что ключ является частью элемента, вставляемого в дерево. Для сравнения двух элементов, а, следовательно, и их ключей, мы будем использовать подпрограмму TtdConrpare.) Упорядочение применяется ко всем узлам в дереве: для каждого узла ключ левого дочернего узла меньше или равен ключу узла, а этот ключ, в свою очередь, меньше или равен ключу правого дочернего узла. Если описанное упорядочение постоянно применяется во время вставки (как именно - будет показано чуть ниже), это также означает, что для каждого узла все ключи в левом дочернем дереве меньше или равны ключу узла, а все ключи в правом дочернем дереве больше или равны ключу узла.

Какие основные операции претерпевают изменения в случае использования дерева бинарного поиска вместо обычного бинарного дерева? Что ж, все алгоритмы обхода работают так же, как и ранее (фактически, при симметричном обходе все узлы в дереве бинарного поиска посещаются в порядке ключей - отсюда и английское название этого метода "in-order"). Однако операции вставки и удаления должны быть изменены, поскольку они могут нарушить порядок ключей в дереве бинарного поиска. Поиск элемента может быть выполнен значительно быстрее.

Алгоритм поиска в дереве бинарного поиска использует упорядоченность дерева. Поиск элемента выполняется следующим образом. Поиск начинается с корневого узла, и этот узел становится текущим. Затем ключ искомого элемента сравнивается с ключом текущего узла. Если они равны, дело сделано, поскольку мы нашли требуемый элемент в дереве. В противном случае, если ключ элемента меньше ключа текущего узла, мы делаем левый дочерний узел текущим. Если он больше, мы делаем текущим правый дочерний узел и возвращаемся к шагу выполнения сравнения. Со временем мы либо найдем нужный узел, либо встретим нулевой дочерний узел, что свидетельствует об отсутствии искомого элемента в дереве.

Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT