Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

Пузырьковая сортировка работает следующим образом. Разложите ваши карты (помните, что их всего 13?). Посмотрите на двенадцатую и тринадцатую карту. Если двенадцатая карта старше тринадцатой, поменяйте их местами. Теперь перейдите к одиннадцатой и двенадцатой картам. Если одиннадцатая карта старше двенадцатой, поменяйте их местами. То же сделайте и для пар (10, 11), (9, 10) и т.д., пока не дойдете до первой и второй карты. После первого прохода по всей колоде туз окажется на первой позиции. Фактически когда вы "зацепились" за туз он "выплыл" на первую позицию. Теперь вернитесь к двенадцатой и тринадцатой картам. Выполните описанный выше процесс, на этот раз остановившись на второй и третьей картах. Обратите внимание, что вам удалось переместить двойку на вторую позицию. Продолжайте процесс сортировки, уменьшая с каждым новым циклом количество просматриваемых карт и поступая так до тех пор, пока вся колода не будет отсортирована.

Полагаем, вы согласитесь с тем, что сортировка была довольно-таки утомительной. При реализации алгоритма на языке Pascal "утомительность" выражается медленной скоростью работы. Тем не менее, существует один простой метод оптимизации пузырьковой сортировки: если при выполнении очередного прохода не было выполнено ни одной перестановки, значит, карты уже отсортированы в требуемом порядке.

Листинг 5.4. Пузырьковая сортировка

procedure TDBubbleSort(aList : TList;

aFirst : integer;

aLast : integer;

aCompare : TtdCompareFunc);

var

i, j : integer;

Temp : pointer;

Done : boolean;

begin

TDValidateListRange(aList, aFirst, aLast, 'TDBubbleSort');

for i := aFirst to pred(aLast) do

begin

Done := true;

for j := aLast downto succ ( i ) do

if (aCompare(aList.List^[j], aList.List^ ) < 0) then begin

{переставить j-ый и (j - 1)-ый элементы}

Temp := aList.List^ [ j ];

aList.List^[j] := aList.List^[j-1];

aList.List^[j-1] :=Temp;

Done := false;

end;

if Done then

Exit;

end;

end;

Пузырьковая сортировка принадлежит к алгоритмам класса O(n(^2^)). Как видите, в реализации присутствуют два цикла: внешний и внутренний, при этом количество выполнений каждого цикла зависит от количества элементов в массиве. При первом выполнении внутреннего алгоритма будет произведено n - 1 сравнений, при втором — n - 2, при третьем — n - 3 и т.д. Всего будет n - 1 таких циклов, таким образом, общее количество сравнений составит:

(n-1) + (n-2)+... + 1

Приведенную сумму можно упростить до n (n - 1)/2 или (n(^2^) - n)/2. Другими словами, получаем O(n(^2^)). Количество перестановок вычислить несколько сложнее, но в худшем случае (когда элементы в исходном наборе были отсортированы в обратном порядке) количество перестановок будет равно количеству сравнений, т.е. снова получаем O(n(^2^)).

Небольшая оптимизация метода пузырьковой сортировки, о которой мы говорили чуть выше, означает, что если элементы в наборе уже отсортированы в нужном порядке, пузырьковая сортировка будет выполняться очень быстро: будет выполнен всего один проход по списку, не будет сделано ни одной перестановки и выполнение алгоритма завершится, (n -1) сравнений и ни одной перестановки говорят о том, что в лучшем случае быстродействие пузырьковой сортировки равно O(n).

Одна большая проблема, связанная с пузырьковой сортировкой, да и честно говоря, со многими другими алгоритмами, состоит в том, что переставляются только соседние элементы. Если элемент с наименьшим значением оказывается в самом конце списка, он будет меняться местами с соседними элементами до тех пор, пока он не достигнет первой позиции.

Пузырьковая сортировка относится к нестабильным алгоритмам, поскольку из двух элементов с равными значениями первым в отсортированном списке будет тот, который находился в исходном списке дальше от начала. Если изменить тип сравнения на "меньше чем" или "равен", а не просто "меньше", тогда пузырьковая сортировка станет устойчивой, но количество перестановок увеличится, и введенная нами оптимизация не даст запланированного выигрыша в скорости.

<p>Шейкер-сортировка</p>

Пузырьковая сортировка имеет одну малоизвестную вариацию, которая на практике дает незначительное увеличение скорости, - это так называемая шейкер-сортировка (shaker sort).

Рисунок 5.2. Два прохода с помощью шейкер-сортировки

Вернемся к картам. Выполните первый проход согласно алгоритму сортировки. Туз попадет на первую позицию. Теперь, вместо прохода колоды карт справа налево, пройдите слева направо: сравните вторую и третью карты и старшую карту поместите на третью позицию. Сравните третью и четвертую карты, и при необходимости поменяйте их местами. Продолжайте сравнения вплоть до достижения пары (12, 13). По пути к правому краю колоды вы "захватили" короля и переместили его на последнюю позицию.

А теперь снова пройдите колоду справа налево до второй карты. Во вторую позицию попадет двойка. Продолжайте чередовать направления проходов до тех пор, пока не будет отсортирована вся колода.

Листинг 5.5. Шейкер-сортировка

procedure TDShakerSort(aList :TList;

aFirst : integer; aLast : integer;

aCompare : TtdCompareFunc);

var

i : integer;

Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT