Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

Прежде всего, давайте изучим влияние выбора базового элемента на быстродействие алгоритма. Если вы помните, в нашей первой процедуре быстрой сортировки в качестве базового элемента выбирался средний элемент. До этого мы коротко рассмотрели и отклонили выбор первого и последнего элемента списка. В идеальном случае следовало бы каждый раз выбирать средний элемент отсортированного списка или, в крайнем случае, избегать выбора в( качестве базового элемента с минимальным и максимальным значением (поскольку в этом случае быстрая сортировка вырождается в длинную серию пустых подсписков и подсписков с одним или меньшим количеством элементов). Часто в качестве базового элемента выбирается случайный элемент. Затем этот элемент меняется местом со средним элементом, и алгоритм выполняется, как и в случае выбора среднего элемента.

Что дает нам случайный выбор базового элемента? При условии, что у нас есть достаточно хороший генератор псевдослучайных чисел, такой выбор гарантирует, что вероятность попадания на "худший" элемент становится пренебрежительно малой. Но, тем не менее, она не превращается в 0, просто выбор наихудшего для быстрой сортировки элемента в качестве базового становится весьма маловероятным.

Листинг 5.15. Быстрая сортировка со случайным выбором базового элемента

procedure QSR(aList : TList;

aFirst : integer;

aLast : integer;

aCompare : TtdCompareFunc);

var

L, R : integer;

Pivot : pointer;

Temp : pointer;

begin

while (aFirst < aLast) do

begin

{выбрать случайный элемент, переставить его со средним элементом и взять в качестве базового элемента}

R := aFirst + Random(aLast - aFirst + 1);

L := (aFirst + aLast) div 2;

Pivot := aList.List^[R];

aList.List^[R] := aList.List^[L];

aList.List^[L] := Pivot;

{задать начальные значения индексов и приступить к разбиению списка}

L := pred( aFirst);

R := succ(aLast);

while true do

begin

repeat

dec(R);

until (aCompare(aList.List^[R], Pivot) <=0);

repeat

inc(1);

until (aCompare(aList.List^[L], Pivot) >=0);

if (L >= R) then

Brealc-Temp := aList.List^[L];

aList.List^[L] := aList.List^[R];

aList.List^[R] := Temp;

end;

{выполнить быструю сортировку первого подфайла}

if (aFirst < R) then

QSR(aList, aFirst, R, aCompare);

{выполнить быструю сортировку второго подфайла - устранение рекурсии}

aFirst :=succ(R);

end;

end;

procedure TDQuickSortRandom(aList : TList;

aFirst : integer;

aLast : integer;

aCompare : TtdCompareFunc);

begin

TDValidateListRange(aList, aFirst, aLast, 'TDQuickSortRandom');

QSR(aList, aFirst, aLast, aCompare);

end;

Как видите, различия между стандартным алгоритмом быстрой сортировки и приведенным в листинге 5.15 совсем незначительны. Основное отличие представляет собой вставленный блок кода, который специально выделен в листинге. В нем первый индекс выбирается случайным образом из диапазона от aFirst до aLast включительно, а затем элемент с выбранным индексом меняется местами со средним элементом. Для удобства в приведенной реализации используется Delphi-функция Random. Она предоставляет хорошие последовательности псевдослучайных чисел. Перестановка выбранного и среднего элементов дает преимущества, о которых мы уже говорили.

Несмотря на то что внесенное изменение снижает вероятность выбора "худшего" элемента при каждом проходе цикла, тем не менее, оно не увеличивает скорость выполнения процедуры. Фактически скорость даже падает (как это и можно было предположить). Генерация случайного числа в качестве индекса для базового элемента работает отлично, в том смысле, что вероятность выбора "плохого" элемента в качестве базового снижается, но это положительное свойство не приводит к повышению быстродействия процедуры. Сложность линейного конгруэнтного метода генерации случайных чисел, используемого функцией Random, только увеличивает время выполнения процедуры. Можно было бы исследовать быстродействие при использовании различных генераторов (некоторые из них будут рассмотрены в главе 6), но оказывается, что существует намного более удачный алгоритм выбора базового элемента.

Самым эффективным методом выбора базового элемента на сегодняшний день является метод медианы трех. Мы уже говорили, что в идеальном случае желательно было бы выбирать средний элемент (или медиану) всех элементов списка. Тем не менее, определение медианы - достаточно сложная задача. Более простым кажется приближенное определение медианы. Для этого из подсписка выбирается три элемента и в качестве базового элемента выбирается медиана этих трех элементов. Медиана трех элементов служит приближением фактической медианы всех элементов списка. Конечно, такой алгоритм предполагает, что в списке должно быть, по крайней мере, три элемента. Но даже если элементов меньше, выполнить их сортировку не представляет большого труда.

Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT