Читаем Геном полностью

В настоящей главе речь пойдет о методах генетической диагностики двух наиболее частых заболеваний современ­ного человечества. Одно из них является быстрым и безжа­лостным убийцей, а второе — медленным и немилосердным пожирателем памяти. Речь идет о сердечно-сосудистых за­болеваниях и о болезни Альцгеймера. Мне кажется, что современные ученые слишком щепетильны и предупреди­тельны, когда речь заходит о генетических предпосылках обоих заболеваний. Промедление с вводом в практику но­вых средств ранней диагностики делает ученых виновны­ми в смерти людей.

Давайте познакомимся с семейством генов аполипопро- теинов, известных еще как гены АРО. Их разделяют на че­тыре основные группы: А, В, С и, почему-то, Е. Но в каж­дой группе существует еще множество вариантов, пред­ставленных генами на разных хромосомах. Среди них нас наиболее будет интересовать ген АРОЕ, лежащий на хро­мосоме 19. Прежде чем мы приступим к рассмотрению этого гена, давайте разберемся в химических реакциях между холестерином и триглицеридными жирами. Когда вы едите бекон с яичницей, в организм поступает огромная порция жиров с холестерином — жирорастворимым веще­ством, из которого в организме образуются многие гормо­ны (см. главу 11). Печень переваривает эти вещества и от­правляет с кровотоком в другие органы и ткани. Поскольку триглицеридные жиры и холестерин сами по себе нерас­творимы в воде, их транспортировка по кровотоку осущест­вляется с помощью особого белка, называемого липопроте- идом. В серии химических превращений липопротеид по­степенно отдает свой груз тем клеткам, которые нуждаются в жирах. В начале пути в кровь поступает полностью загру­женный белок, называемый VLDL (very-low-density lipopro­tein — липопротеид очень низкой плотности). По мере того как от белка отрываются триглицериды, он превращается в LDL (low-density lipoprotein — липопротеид низкой плот­ности, или, как его еще называют, «плохой холестерин»). Наконец, отдав клеткам прицепной холестерин, белок пре­вращается в HDL (high-density lipoprotein — липопротеид высокой плотности, или «хороший холестерин»), который возвращается в печень за новой порцией жиров.

Работа белка АРОЕ (читается как «апо-эпсилон») состо­ит в контроле за взаимодействием белка VLDL и рецепто- pa на поверхности клетки, нуждающейся в триглицеридах. Другой белок, АРОВ (апо-бета), управляет обменом холесте­рина между липопротеидом и рецепторами клетки. Вполне очевидно, что мутации в генах АРОЕ и АРОВ могут вести к развитию сердечно-сосудистых заболеваний. Если они пло­хо работают, то жиры и холестерин задерживаются в крове­носном русле и в конце концов оседают на стенках сосудов. Нокаутирование у мыши гена АРОЕ ведет к быстрому раз­витию артериосклероза даже при соблюдении нормальной диеты. Безусловно, мутации генов самих липопротеидов и белков-рецепторов также влияют на циркуляцию холе­стерина и жиров в организме, что способствует развитию инфарктов. Так, наследуемое генетическое заболевание, называемое семейной гиперхолестеринемией, вызывается редкой мутацией в «тексте» гена рецептора холестерина (LyonJ., Corner P. 1996. Altered fates. Norton, New York).

Ген АРОЕ выделяется среди других генов семейства сво­им полиморфизмом. Он почти так же изменчив, как цвет глаз. Известны три основные версии этого гена: Ет Е} и Ej. Поскольку белки от разных версий гена отличаются по способности отщеплять триглицериды от липопротеидов крови, изучение распространения этих версий гена чрез­вычайно важно для прогнозирования частоты сердечно­сосудистых заболеваний. Вариант Е3 — наиболее активный и чаще всего встречается у европейцев. Свыше 80% евро­пейцев имеют хотя бы одну версию этого гена на своих хромосомах, и у 39% ген представлен в двух копиях. Но в геноме 7% европейцев содержатся две копии гена Е4, что значительно повышает для них риск развития сердечно-со- судистых заболеваний. Это же справедливо и для 4% насе­ления, геном которых содержит две копии гена Е2 (Eto М., Watanabe К., Makino I. 1989. Increased frequencies of apolipo- protein E2 and E4 alleles in patients with ischemic heart disease. Clinical Genetics 36: 183-188).

Перейти на страницу:

Похожие книги