Общая теория относительности — это открытие не физика, не астронома, а математика. Во всяком случае, так считают многие физики и математики. Академик С. Л. Соболев говорил как-то в одном из своих интервью; "В середине XIX века Лобачевский построил свою "воображаемую геометрию", а затем Риман развил его идею и создал математическую теорию пространства, обладающего переменной внутренней кривизной, то есть имеющего различную кривизну в различных точках. Из этих исследований возник великолепный математический аппарат — тензорный анализ. Благодаря ему из трудов Пуанкаре и Эйнштейна родилась теория относительности..."
К этим словам можно только добавить, что теория относительности не родилась бы в голове Эйнштейна, если бы с ранней юности в ней не поселилась неотвязная мысль: как соотносится математика и реальный мир? Пуанкаре считал — никак. То есть каждый волен выбирать себе любую математику, произвольную геометрию — Евклида, Лобачевского, Римана или свою собственную непротиворечивую систему аксиом, из которой логически строго следуют все теоремы. Быть может, именно это заблуждение помешало Анри Пуанкаре открыть теорию относительности, ведь математически он был подкован лучше Альберта Эйнштейна. Сам же Эйнштейн считал, что ученый не волен в выборе геометрии, его математика должна проверяться окружающим миром. "...Геометрия сохраняет характер математической науки, — писал он, — так как вывод ее теорем из аксиом останется по-прежнему чисто логической задачей; но в то же время она становится и физической наукой, так как ее аксиомы содержат утверждения, относящиеся к объектам природы, — утверждения, справедливость которых может быть доказана только опытом".
Физический смысл аксиом геометрии, острый привкус реальности в самых абстрактных математических выкладках — это и привело к созданию величайшей теории нашего века.
"Вселенная, изображаемая теорией относительности эйнштейна, подобна раздувающемуся мыльному пузырю. Она — не его внутренность, а пленка. Поверхность пузыря двумерна, а пузырь вселенной имеет четыре измерения: три пространственных и одно — временное" — так писал некогда видный английский физик Джеймс Джине. Этот современный ученый (он умер в 1946 году) как бы возродил старую идеалистическую идею последователей Платона и Пифагора о том, что все вокруг — это чистая математика, и творец этой математической Вселенной, демиург, сам, стало быть, был математиком. (Тут, правда, следует заметить следующее: демиург Платона Вселенную творил все-таки из чего-то материального, более поздние идеалисты превратили демиурга в бога, который, как известно, стал творить в буквальном смысле из ничего; разница существенная.)
Эйнштейн, однако, тоже был математиком. Его формулы позволяют вычислить радиус этой Вселенной. Поскольку кривизна ее зависит от массы тел, которые ее составляют, то надо знать среднюю плотность материи. Астрономы в течение многих лет изучали одни и те же маленькие участки неба и скрупулезно подсчитывали количество материи в них. Оказалось, что плотность равна приблизительно 10-30г
/см3. Если подставить эту цифру в формулы Эйнштейна, то, во-первых, получится положительная величина кривизны — то есть наша Вселенная замкнута! — а во-вторых, радиус ее равен 35 миллиардам световых лет. Это значит, что хотя Вселенная и конечна, но она огромна — луч света, мчась по Большому Космическому кругу, вернется в ту же точку через 200 миллиардов земных лет! В нашей гигантской гиперсфере хватает места для миллиардов галактик, а в каждой из них — для миллиардов звезд.Это не единственный парадокс вселенной Эйнштейна. Она не только конечна, но безгранична, она еще и непостоянна.
Свою теорию Альберт Эйнштейн сформулировал в виде десяти очень сложных, так называемых нелинейных дифференциальных уравнений. Однако далеко не все ученые отнеслись к ним как к десяти заповедям, допускающим лишь одно-единственное толкование. Да это и не удивительно — ведь точно решить такие уравнения современная математика не умеет, а приближенных решений может быть много. И вот наш соотечественник " Александр Александрович Фридман в 1922 году предложил такое решение уравнений Эйнштейна, при котором получалось, что галактики не могут находиться на зафиксированных расстояниях одна от другой, они должны с течением времени разлетаться — и чем дальше, тем быстрее.
"Результаты относительно нестационарного мира, содержащиеся в упомянутой работе, представляются мне подозрительными", — написал Эйнштейн по поводу статьи Фридмана в научном журнале. Но очень скоро в печати появились совсем другие его слова: "В предыдущей заметке я подверг критике названную выше работу. Однако моя критика, как я убедился из письма Фридмана... основывалась на ошибке в вычислениях".