Строители и архитекторы издавна предпочитают геометрические соображения даже самым очевидным и убедительным фактам. Они, например, пренебрегают заветом предков и с охотой строят дома на песке. Более того, если грунт не вызывает у них доверия, они выбрасывают его прочь и привозят на это место песок, который затем утрамбовывают. После объяснений Рейнольдса ясно, что песчинки приходят в состояние наиплотнейшего расположения и грунт приобретает все свойства твердого тела. Именно поэтому до сих пор прочно стоит "твердыня власти роковой" — Петропавловская крепость, первое большое архитектурное сооружение, построенное на песке — и на геометрической идее, заложенной в ее фундамент.
"Есть тонкие, властительные связи", — говорил поэт. Связь между правильными многоугольниками, мозаиками и многогранниками слишком глубока, чтобы не быть явной — они дети одной и той же математической идеи. Как плоскость можно покрыть некоторыми из правильных многоугольников, так и пространство удается заполнить Платоновыми телами. Случай с кубами тривиален. Но взгляните на гравюру Маурица Эсхера "Плоские черви", которой он предпослал такие слова: "Строительный кирпич имеет форму прямоугольного параллелепипеда, и это логично, потому что такие кирпичи соединять друг с другом проще всего. Но любой человек, любящий и понимающий красоту правильных тел, может пожалеть, что строители не используют другие формы. Например, тетраэдры, перемежающиеся с октаэдрами, могут складываться один с другим не хуже традиционных кирпичей. Вот дом, построенный из комбинаций этих двух форм. Он не имеет ни вертикальных, ни горизонтальных поверхностей, ни полов, ни стен, ни потолка — в обычном понимании этих слов. Вот почему он весь внутри заполнен какой-то жидкой средой, в которой плавают существа, напоминающие плоских червей — планарий".
Эти плоские черви вновь возвращают нас к мозаикам — обитателям двумерного мира.
Евклидову плоскость можно покрыть квадратами так, чтобы в каждой вершине их сходилось по четыре, — это и будет мозаика {4,4}. Но стоит нам захотеть объединить квадраты таким образом, чтобы к каждой вершине прилегало лишь три из них, как фигура замкнется в пространстве и мы получим куб {4,3}. Точно так же плоскость удается заполнить правильными треугольниками, собранными по шестеркам в каждой вершине, — мозаика {3,6}. Но если надо, чтобы вершину окружали три, четыре или пять таких треугольников, то мы опять получим замкнутые пространственные тела — уже знакомые нам тетраэдр {3,3}, октаэдр {3,4} и икосаэдр {3,5}.
Размышляя об этих превращениях, мы постигаем простейшие понятия топологии. И вместе с тем становится ясным, насколько общи ее законы, насколько универсален характер изучаемых ею зависимостей.
Первым, кто увидел глубокую общность мозаик и многогранников, был Иоганн Кеплер. Именно он предложил рассматривать плоскость, заполненную прилегающими друг к другу многоугольниками, как выродившийся многогранник и потому смог применить к ним одну и и ту же общую теорию.
Потом эта его мысль была продолжена в обе стороны: жалкая многократно "надломленная" прямая линия стала выродившимся многоугольником, а многогранники превратились всего лишь в трехмерных представителей неких многомерных сверхтел — величественных "политопов", речь о которых впереди.
Что же касается великолепных сферических мозаик, то их положение в известном смысле промежуточное — от плоскости ушли, а к многогранникам не пришли. Но именно поэтому они оказались очень удобным инструментом для исследования пространственных фигур. Кроме того, благодаря своей броской красоте они были изучены давно — первым их описывал известный на Востоке математик Абу-л-Ваф, живший в X веке. И в наши дни сферические мозаики притягивают к себе внимание художественных натур. Например, эсхеровские "Буковый шар", "Ангелы и дьяволы" и "Сфера с человеческими фигурами" — ювелирно вырезанные из дерева пространственные мозаики так хороши, что легко могут стать источником вдохновения и фантазии.
И то и другое нам понадобится, когда речь пойдет о фигурах, живущих в четвертом и более высоких измерениях, — сверхмногогранниках.
Высшее назначение математики — находить порядок в хаосе, который нас окружает.
VII. Музыка сфер
Несмотря на ту высокую степень развития, до которой доведены науки математические трудами великих геометров трех последних столетий, практика обнаруживает ясно неполноту их во многих отношениях...