"Творчество знаменитого голландского "математического графика" Маурица Корнелиса Эсхера пользуется во всем мире широкой известностью у любителей искусства и,, вероятно, еще в большей степени у любителей науки; за последние десятилетия этот интерес захватил и нашу страну. (Автор настоящих строк также откликнулся в свое время на интерес к Эсхеру, коснувшись его творчества в статье "Симметрия и искусство орнамента", помещенной в сборнике "Ритм, пространство и время в литературе и искусстве", Л., Наука, 1974; однако в этой довольно специальной и общей статье Эсхеру возможно было уделить лишь минимум внимания.) Связь творчества Эсхера с наукой — с математикой, физикой, кристаллографией — является совершенно бесспорной; ее охотно подчеркивал и сам художник, выпустивший, например, специально рассчитанный на кристаллографов альбом своих рисунков, призванный проиллюстрировать все плоские кристаллографические группы: в качестве наименования отдельных иллюстраций из этого альбома он указал принятые в кристаллографии обозначения групп симметрии этих рисунков. Характерна также тесная связь М. К. Эсхера с одним из крупнейших современных геометров, канадцем Гарольдом Скоттом Макдональдом Коксетером. Книги Коксетера, в том числе и переведенные на русский язык, иллюстрировались гравюрами Эсхера, а Коксетер написал статью, сопровождающую один из последних (и из самых лучших) альбомов Эсхера. С другой стороны, некоторые из эффектных "неевклидовых" гравюр Эсхера развивают, как неоднократно указывал сам художник, темы, заимствованные из "чисто геометрических" иллюстраций к научным сочинениям Коксетера.
...Последняя глава книги посвящена прямой реализации "неевклидовых" идей у Эсхера, к слову сказать возникших в его художественном творчестве в разных вариантах еще до его прямого знакомства с гиперболической геометрией Лобачевского. Дело в том, что в соответствии с известными идеями Ф. Клейна различные "геометрии" различаются характеризующими их группами симметрии, так что различие, скажем, между классической геометрией Евклида и гиперболической геометрией Лобачевского связано не с разными свойствами параллельных — второстепенные и мало существенные свойства! — а исключительно с разным строением групп симметрии пространства или плоскости. Возможно, что до знакомства с сочинениями Коксетера Эсхер и не был знаком с этими подходами к геометрии, но с его обостренным вниманием к симметрии он, разумеется, не мог пройти в своем творчестве мимо попыток модификации "евклидовой симметрии", что и приводило его к разным типам "неевклидовых" пространств. При этом если в "модели Клейна" и в "модели Пуанкаре" неевклидовой геометрии Лобачевского роль "абсолюта", то есть множества "бесконечно удаленных точек", играет окружность или, реже, прямая, то в конструкциях Эсхера "точки схода" ("бесконечно удаленные точки") могли заполнять границу квадрата или вовсе быть изолированными; последние варианты эсхеровских построений отвечали системам симметрии, характеризующим, скажем, логарифмическую спираль Я. Бернулли или так называемую спираль Корню, играющую столь значительную роль в волновой оптике. Наконец, последняя часть последней главы книги Бруно Эрнста посвящена "змеиной теме" у Эсхера[22]
, в которой несколько неожиданным образом сливаются сразу две глубокие математические идеи: учение об узлах, занимающее столь заметное место в топологии, и та же тема о реализации "бесконечно удаленных точек" плоскости.Доктор физико-математических наук, профессор И. М. Яглом
".