Читаем Гильберт. Основания математики полностью

Но в том же 1904 году Гильберт удивил математический мир, восстановив доверие к принципу Дирихле, которое тот утратил после критики Вейерштрасса. До Вейерштрасса предполагалось, что в вариационном исчислении у любого функционала есть минимум. Гильберт доказал, что в конкретном случае энергии ДирихлеJ(u) действительно есть минимум. Он построил минимизирующую последовательность функций, значения которой для интеграла были каждый раз все более низкими и сходились к наименьшему значению. И на ее основе он получил минимум, то есть функцию иу которая де факто достигала этого наименьшего значения. Физики и математики могли вздохнуть с облегчением.


НАУКА НА РАСПУТЬЕ

В конце XIX века физики работали в рамках совместного опыта. Классическая механика (созданная Ньютоном) и классическая электродинамика (завершенная Максвеллом) предоставляли абсолютно удовлетворительный для понимания окружающего нас мира материал. С увеличением точности измерительных приборов и возможности осуществлять все более сложные эксперименты физики начали изучать явления в не самых привычных условиях: при очень высоких скоростях (близких к скорости света) и на макрокосмическом или микроскопическом уровне. Именно тогда стали возникать расхождения с прогнозами, которые давала классическая физика, что привело к пересмотру ее оснований и породило две великие физические теории прошлого века: теорию относительности и квантовую теорию. Первая ставила своей целью объяснить явления, происходящие при высоких скоростях (специальная теория относительности) и космических масштабах (общая теория относительности), вторая же изучала явления атомного масштаба (квантовая механика).

К 1900 году ясность классической физики скрывали всего четыре тучи — проблемы, которые она не могла объяснить: излучение черного тела, фотоэлектрический эффект, спектры химических элементов и эфирный ветер. Первые три проблемы дали дорогу квантовой, а последняя — релятивистской физике. Классический принцип относительности, обязанный своим рождением Галилею, не был способен дать объяснение некоторым электромагнитным явлениям, измеряемым интерферометром (эксперимент Майкельсона — Морли). В 1905 году Альберт Эйнштейн (1879-1955) заложил основы специальной теории относительности в своей статье «К электродинамике движущихся тел». Чтобы решить мнимое противоречие, которое проявлялось при изучении поведения уравнений Максвелла в трансформациях Галилея (не прибегая к гипотетическому эфирному ветру), Эйнштейн предложил поддержать теорию Максвелла, изменив механику Ньютона. Нужно было оставить трансформации Галилея, заменив их на трансформации Лоренца, и принять революционную гипотезу: инвариантность скорости света. Среди его выводов были следующие: отказ от эфира, относительность одновременности, сжатие пространства, замедление времени и так далее. Специальная теория относительности вмиг перечеркнула иллюзию об абсолюте пространства и времени классической физики.

Специальная теория относительности, хотя и была чрезвычайно дерзкой с позиции физики, не требовала математики, неизвестной на тот момент физикам и лежавшей в основе работ Пуанкаре и Хендрика Лоренца (1853-1928). В своем озарении Эйнштейн применил не очень требовательную математику. Однако некоторые физики и математики посчитали, что столь радикальные физические и философские идеи должны быть подкреплены новыми математическими формулировками. И здесь вступил в игру старый товарищ Гильберта, Герман Минковский.


ГИПОТЕЗА ВАРИНГА

Как для Минковского, так и для Гильберта теория чисел была самым чудесным порождением человеческой мысли. В 1908 году, взяв перерыв в работе, чтобы поправить здоровье, Гильберт доказал гипотезу, предложенную британским математиком Эдуардом Варингом (1734-1798):

«Любое целое число представимо как сумма максимум девяти кубов; любое число можно представить в виде не более 19 четвертых степеней, и так далее». Другими словами, без каких- либо доказательств утверждалось, что для любой степени к существует некоторое минимальное число таких степеней (назовем его g(k), поскольку оно зависит от степени выбранного к), которое позволяет выразить любое число л в виде суммы ровно g(k) к-х степеней:

n =х1k + х2k + ... + xg(k)k.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

Отцы-основатели
Отцы-основатели

Третий том приключенческой саги «Прогрессоры». Осень ледникового периода с ее дождями и холодными ветрами предвещает еще более суровую зиму, а племя Огня только-только готовится приступить к строительству основного жилья. Но все с ног на голову переворачивают нежданные гости, объявившиеся прямо на пороге. Сумеют ли вожди племени перевоспитать чужаков, или основанное ими общество падет под натиском мультикультурной какофонии? Но все, что нас не убивает, делает сильнее, вот и племя Огня после каждой стремительной перипетии только увеличивает свои возможности в противостоянии этому жестокому миру…

Айзек Азимов , Александр Борисович Михайловский , Мария Павловна Згурская , Роберт Альберт Блох , Юлия Викторовна Маркова

Фантастика / Биографии и Мемуары / История / Научная Фантастика / Попаданцы / Образование и наука