Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Ахилл (неуверенно): Соглашусь ли я? То есть, э-э, гмм… как это я могу не согласиться с таким скучным и плоским утверждением? Минуточку… (Смотрит себе на пальцы и бормочет.) Раз, два, три, четыре… (Вслух, Черепахе) Г-жа Черепаха, а мизинец тоже считается за палец?

Черепаха: Я думаю, да.

Ахилл (снова бормочет): Ага! Получается пять. Кажется, правильно. Я проверил все необходимые и достаточные условия истинности, так что… (Вслух, на этот раз гораздо более уверенно): ЛЮБОЙ знает, что тривиальное суждение «у людей пять пальцев» — истинно! Что может быть более очевидно?

Черепаха: Разумеется. А теперь потрудитесь проверить почти такое же очевидное утверждение, а именно:

В этом предложении пять слов.

Ахилл (бормочет себе под нос): Гмм… раз… два… три… четыре… пять! Да, действительно, я должен согласиться с истинностью и этого утверждения. В ЭТОМ предложении я не вижу никаких проблем.

Черепаха: Превосходно! Теперь, когда мои теоретические предположения получили экспериментальное подтверждение в ваших строгих исследованиях, я чувствую себя значительно лучше. Сейчас же, поскольку мы согласны по всем статьям, нам остается только соединить эти два невинных предложения в одно подлиннее, с помощью вашего безопасного слова «и».

Ахилл: Именно «безопасного», г-жа Ч. Вам не удастся обвести меня вокруг пальца! Что ж, начнем, пожалуй…

Черепаха: Прекрасно. Посмотрим… у меня получается следующее предложение, которое, безусловно, должно оказаться истинным:

У людей пять пальцев и в этом предложении пять слов.

Ахилл: Постойте, г-жа Ч! Что-то здесь не то!

Черепаха (всем своим видом выражая невинное удивление): Что? Что вы имеете в виду?

Ахилл: Вы соединяете эти предложения неправильно!

Черепаха: Я только последовала вашему совету и использовала ваше любимое «и».

Ахилл: Не знаю, не знаю… То, что у вас получилось, НЕЛОГИЧНО! Где-то здесь должна быть ошибка…

Черепаха: Ну вот, вы снова заговорили о г-же Логике и ее великих принципах… Будьте так любезны, увольте — хотя бы на сегодня.

Ахилл: Г-жа Черепаха, у меня уже черепушка трещит от всего этого. Признайтесь, что вы немного сжульничали…

Черепаха: Пожалуйста, не обвиняйте меня в собственных грехах, кто из нас хотел соединить два высказывания с помощью «и».Мне кажется, я только следовала вашим пожеланиям — и какова же ваша благодарность? Ну и молодежь нынче пошла…

Ахилл: Ну вот, я же и виноват. Ведь я хотел, как лучше…

Черепаха: Добрыми намерениями, мой юный друг, вымощена дорога в преисподнюю…

Ахилл: Я чувствую себя ужасно…

Черепаха: Я отлично понимаю, куда вы клонили: вы хотели заставить меня принять за истинную фразу «Мой панцирь зеленый и мой панцирь не зеленый». О, создатель!… Какая страшная ложь, и как она противна черепашьему духу!

Ахилл: Умоляю вас простить меня, дурака… Честное слово, у меня и в мыслях не было вас обидеть.

Черепаха: Ничего, мой друг — мы, черепахи, привыкли к людской бестактности. Я ценю вашу компанию, Ахилл, пусть ваши мысли и не так кристально ясны, как у созданий нашей хладнокровной породы.

Ахилл (вздыхая): Надеюсь, что для меня еще не все потеряно — хотя я, наверняка, сделаю еще немало ложных шагов на пути к истине…

Черепаха: Мужайтесь, Ахилл. Может быть, наша сегодняшняя беседа вам поможет… Кстати, не забудьте отдать мне ту фигу, что вы мне принесли. Хоть она и зеленая, все равно пригодится!

Ахилл: Вот, возьмите.

Черепаха: Что ж, до скорого, мой друг.

Ахилл: До скорого.

ГЛАВА VII: Исчисление Высказываний

Слова и символы

ПРЕДЫДУЩИЙ ДИАЛОГ напоминает «Двухголосную инвенцию» Льюиса Кэрролла. В обоих диалогах Черепаха отказывается использовать обычные повседневные слова в их обычном повседневном значении — по крайней мере, когда ей это невыгодно. В предыдущей главе был предложен один из возможных взглядов на парадокс Кэрролла. В этой главе мы проделаем при помощи символов то, что Ахиллу не удалось проделать словами. Иными словами, мы построим такую формальную систему, один из символов которой будет действовать так, как Ахилл хотел заставить действовать Черепахино «и»; другой символ будет вести себя так, как должны были вести себя слова «если… то…». Кроме того, мы будем иметь дело со словами «или» и «не». Рассуждения, зависящие исключительно от правильного употребления этих четырех слов, называются пропозициональными рассуждениями.

Алфавит и первое правило исчисления высказываний

Я буду представлять эту новую формальную систему, называемую исчислением высказываний, в форме загадки, объясняя сначала лишь часть и предоставляя читателю догадываться о некоторых вещах самому. Начнем со списка символов:

< >

P Q R '

Λ V э ~

[ ]

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное