Единственные символы, которые мы еще не интерпретировали, это атомы. У них нет единственной интерпретации — их можно интерпретировать, как любое высказывание русского языка (если атом встречается несколько раз в одной и той же деривации, он должен быть интерпретирован всегда одинаково). Таким образом, например, правильно сформированная строчка <P
Λ ~P> может быть интерпретирована следующим образом:Давайте теперь вернемся к теоремам, которые мы вывели до сих пор, и постараемся их интерпретировать. Первая теорема была <P
э ~~P>. Если интерпретировать P всегда одинаково, то мы получим следующее высказывание:Обратите внимание, как я сформулировал двойное отрицание. В любом натуральном языке неловко повторять отрицание два раза — мы обходим это препятствие, выражая отрицание по-разному. Вторая наша теорема была <<P
Λ Q>э<Q Λ P>>. Пусть Q — высказывание «Этот огурец весит полкило»; тогда наша теорема читается как:Третьей теоремой была <P
э<Q э<P Λ Q>>>. Она разворачивается в структуру «если … то» с вложением:Вы вероятно, заметили, что каждая теорема, будучи интерпретированной, выражает что-либо совершенно тривиальное и самоочевидное. (Иногда теоремы бывают
Мы еще не привели всех правил исчисления высказываний. Их полный список, включая три новые правила, приведен ниже.
ПРАВИЛО ОБЪЕДИНЕНИЯ: Если
ПРАВИЛО РАЗДЕЛЕНИЯ: Если <
ПРАВИЛО ДВОЙНОЙ ТИЛЬДЫ: Строчка «~~
» может быть выброшена из любой теоремы. Она также может быть вставлена в любую теорему, если при этом получается правильно сформированная строчка.ПРАВИЛО ФАНТАЗИИ: Если, принимая
ПРАВИЛО ПЕРЕНОСА: В фантазию можно внести любую теорему из «реальности» одним уровнем выше и использовать ее там.
ПРАВИЛО ОТДЕЛЕНИЯ: Если
ПРАВИЛО КОНТРАПОЗИЦИИ: <
ПРАВИЛО ДЕ МОРГАНА: <~
ПРАВИЛО ЗАМЕНЫ: <
Под «взаимозаменяемостью» здесь понимается следующее: если одно из двух выражений встречается в виде теоремы или части теоремы, оно может быть заменено на второе, и результат также будет теоремой.
Прежде чем рассматривать эти правила в действии, я хочу их коротко пояснить. Вы, вероятно, можете придумать примеры получше; поэтому я ограничусь только несколькими.
Правило контрапозиции показывает то, каким образом мы перевертываем условные предложения (обычно мы делаем это бессознательно). Например, буддистское изречение о Тропе — дороге к Мудрости:
Если вы изучаете ее, то вы далеко от Тропы,
означает то же самое, что
Если вы близко к Тропе, то вы ее не изучаете.
Правило Де Моргана может быть проиллюстрировано на примере хорошо знакомого нам высказывания «Флаг не движется и ветер не движется». Если P
означает «флаг движется» и Q — «ветер движется», то комбинированное высказывание будет <~P Λ ~Q>, которое, согласно правилу Де Моргана, может быть заменено на ~<P V Q>: «Неверно, что флаг или ветер движутся». Никто не станет оспаривать, что это весьма осмысленное дзен-ключение…