Однако прежде чем придти к заключению, давайте рассмотрим подробнее этот высший уровень изоморфизма. Это очень хорошее упражнение. Наша цель — придумать арифметические правила, действующие точно так же, как типографские правила системы MIU.
Ниже приведено решение. В этих правилах
ПРАВИЛО 1: Если мы получили 10
ПРАВИЛО 2: Если мы получили 3 * 10
ПРАВИЛО 3: Если мы получили
ПРАВИЛО 4: Если мы получили
Не следует забывать нашу аксиому! Без нее мы как без рук, так что давайте запишем постулат.
Мы можем получить 31.
Теперь правую колонку можно рассматривать как арифметический процесс в новой арифметической системе, которую мы назовем
(1) 31 аксиома
(2) 311 правило 2 (
(3) 31111 правило 2 (
(4) 301 правило 3 (
(5) 3010 правило 1 (
(6) 3010010 правило 2 (
(7) 30110 правило 4 (
Обратите внимание на то, что удлиняющие и укорачивающие правила снова с нами и в системе 301; они просто переведены в область чисел таким образом, что Гёделевы номера в системе возрастают и уменьшаются. Если вы посмотрите внимательно на то, что происходит, то увидите, что правила основаны на простой идее, а именно: сдвиг цифр направо и налево в десятичной записи чисел имеет отношение к умножению на степени числа 10. Это простое наблюдение обобщено в следующем центральном предложении:
ЦЕНТРАЛЬНОЕ ПРЕДЛОЖЕНИЕ: Если у нас имеется некоторое правило, говорящее нам, как определенные цифры могут быть передвинуты, заменены, добавлены или опущены в в десятичной записи любого числа, то это правило также может быть представлено соответствующим арифметическим правилом при помощи арифметических операций со степенями числа 10, а также сложения, вычитания и так далее.
Или короче:
Типографские правила манипуляции с
Это простое наблюдение находится в самом сердце Гёделева метода; оно будет иметь совершенно потрясающий эффект. Оно говорит нам, что если у нас есть Гёделева нумерация для любой формальной системы, мы можем тут же получить набор арифметических правил, дополняющих Гёделев изоморфизм. В результате оказывается возможным перевести изучение любой формальной системы — на самом деле,
Подобно тому, как набор типографских правил порождает набор теорем, в результате повторного применения арифметических правил получается соответствующее множество натуральных чисел. Эти
Заметьте, что выводимые числа (в любой данной системе) определяются рекурсивным методом: нам даны числа, о которых мы знаем, что они выводимы, и набор правил, объясняющих, как получить другие выводимые числа. Таким образом, класс выводимых чисел постоянно расширяется, подобно списку чисел Фибоначчи или чисел Q. Множество выводимых чисел любой системы — это