Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Возможно, что этому способствовал тот факт, что Рамануян происходил из самой отсталой части Индии, где факиризм и подобные мистические индийские ритуалы практиковались тысячелетиями — и продолжали встречаться во времена Рамануяна, возможно, чаще, чем высшая математика. И его ошибки, вместо того, чтобы подтвердить, что он — всего лишь человек, парадоксальным образом породили веру в то, что заблуждения Рамануяна на самом деле являлись «правотой высшего порядка», некой «восточной истиной», недоступной западному уму. Какая замечательная, почти неотразимая мысль! Даже Харди, кто должен был бы первым опровергнуть идею о мистических способностях Рамануяна, однажды написал: «И все же я не уверен, что, каким-то образом, его промах не является более замечательным, чем любой из его успехов».

Другой выдающейся чертой Рамануяна была его «дружба с целыми числами», по выражению его коллеги Литтлвуда. Многие математики до какой-то степени разделяют эту черту, но у Рамануяна она была развита до крайности. Об этой его характеристике ходили легенды. Одна из них была рассказана Харди:

Однажды я пришел навестить его, когда он лежал больной в Путни. Я сказал ему, что приехал на такси с номерным знаком 1729 и заметил, что в этом номере нет ничего интересного и что как бы это не оказалось дурным предзнаменованием. «Напротив», — ответил он, — «это очень интересный номер: это наименьшее, число, которое можно выразить как сумму двух кубов двумя разными способами». Я, естественно, спросил его, знает ли он ответ на аналогичную задачу для четвертой степени, на что он после минутного раздумья ответил, что он точно не знает, но что ему кажется, что это будет очень большое число.[50]

Ответом на эту задачу оказывается:

635 318 657 = 1344 + 1334 = 1584 + 594

Читатель может попробовать решить аналогичную задачу для квадратов, что намного легче.

Интересно подумать, почему Харди сразу перешел к четвертой степени. В конце концов, существуют несколько других естественных обобщений уравнения:

u 3 + v 3 = x 3 + у 3

Например, можно подумать о том, как представить некое число в виде суммы двух кубов тремя различными способами:

r 3 + s 3 = u 3 + v 3 = x 3 + у 3

или использовать три различных куба:

u 3 + v 3 + w 3 = x 3 + у 3 + z 3

r 4 + s 4 + t 4 = u 4 + v 4 + w 4 = x 4 + у 4 + z 4

Однако в каком-то смысле задача Харди оказывается наиболее «математической». Возможно ли будет когда-либо запрограммировать это чувство математической эстетики?

Другой рассказ о Рамануяне взят из его биографии, написанной его соотечественником С. Р. Ранганатаном. Этот рассказ носит название «Прозрение Рамануяна» и принадлежит его товарищу по Кембриджскому университету, П. С. Махаланобису, также выходцу из Индии:

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное