Возможно, что этому способствовал тот факт, что Рамануян происходил из самой отсталой части Индии, где факиризм и подобные мистические индийские ритуалы практиковались тысячелетиями — и продолжали встречаться во времена Рамануяна, возможно, чаще, чем высшая математика. И его ошибки, вместо того, чтобы подтвердить, что он — всего лишь человек, парадоксальным образом породили веру в то, что заблуждения Рамануяна на самом деле являлись «правотой высшего порядка», некой «восточной истиной», недоступной западному уму. Какая замечательная, почти неотразимая мысль! Даже Харди, кто должен был бы первым опровергнуть идею о мистических способностях Рамануяна, однажды написал: «И все же я не уверен, что, каким-то образом, его промах не является более замечательным, чем любой из его успехов».
Другой выдающейся чертой Рамануяна была его «дружба с целыми числами», по выражению его коллеги Литтлвуда. Многие математики до какой-то степени разделяют эту черту, но у Рамануяна она была развита до крайности. Об этой его характеристике ходили легенды. Одна из них была рассказана Харди:
Однажды я пришел навестить его, когда он лежал больной в Путни. Я сказал ему, что приехал на такси с номерным знаком 1729 и заметил, что в этом номере нет ничего интересного и что как бы это не оказалось дурным предзнаменованием. «Напротив», — ответил он, — «это очень интересный номер: это наименьшее, число, которое можно выразить как сумму двух кубов двумя разными способами». Я, естественно, спросил его, знает ли он ответ на аналогичную задачу для четвертой степени, на что он после минутного раздумья ответил, что он точно не знает, но что ему кажется, что это будет очень большое число.[50]
Ответом на эту задачу оказывается:
635 318 657 = 1344 + 1334 = 1584 + 594
Читатель может попробовать решить аналогичную задачу для квадратов, что намного легче.
Интересно подумать, почему Харди сразу перешел к четвертой степени. В конце концов, существуют несколько других естественных обобщений уравнения:
u 3
+ v 3 = x 3 + у 3Например, можно подумать о том, как представить некое число в виде суммы двух кубов тремя различными способами:
r 3
+ s 3 = u 3 + v 3 = x 3 + у 3или использовать три различных куба:
u 3
+ v 3 + w 3 = x 3 + у 3 + z 3r 4
+ s 4 + t 4 = u 4 + v 4 + w 4 = x 4 + у 4 + z 4Однако в каком-то смысле задача Харди оказывается наиболее «математической». Возможно ли будет когда-либо запрограммировать это чувство математической эстетики?
Другой рассказ о Рамануяне взят из его биографии, написанной его соотечественником С. Р. Ранганатаном. Этот рассказ носит название «Прозрение Рамануяна» и принадлежит его товарищу по Кембриджскому университету, П. С. Махаланобису, также выходцу из Индии: