Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Заметьте, что здесь не только усилено заключение, но и опущено условие сообщаемости, характеризовавшее более слабую Коллективную Версию. Давайте рассмотрим эту смелую версию Тезиса.

Эта версия утверждает, что когда человеческое существо что-то вычисляет, его умственная деятельность может быть изоморфно отображена в некой программе Флупа. Это не означает, разумеется, что в мозгу действует настоящая программа Флупа, написанная на языке Флуп с командами НАЧАЛО КОНЕЦ ПРЕРВАТЬ и так далее. Это значит только то, что операции выполняются в том же порядке в каком они могли бы выполняться в программе Флупа, и что логическая структура вычислений может быть отображена во Флупе.

Чтобы эта идея имела смысл, мы должны различать уровни как в компьютере, так и в мозгу — иначе эта мысль может показаться совершенной чепухой. Предположительно, операции вычисления в наших головах совершаются на высшем уровне, опирающемся на низшие уровни и, в конечном счете, на «аппаратуру». Таким образом, говоря об изоморфизме, мы подразумеваем, что высший уровень может быть изолирован и что мы можем обсуждать происходящие там процессы независимо от того, что делается на других уровнях — и затем проимитировать этот высший уровень в программе Флупа. Точнее, наше предположение заключается в том что существуют некие блоки мысленной «программы», которые играют роль математических построений и активируются таким образом, который может быть в точности отображен в программе Флупа (см. рис. 106). Эти блоки существуют благодаря инфраструктуре мозга, которую мы обсуждали в главах ХI и XII, а также в «Прелюдии» и в «Муравьиной фуге». Мы не предполагаем изоморфной деятельности на низших уровнях мозга и компьютера (нейроны и биты).

Если не букву, то дух Версии Изоморфизма можно передать, говоря, что гениальный идиот, вычисляя, скажем логарифм π, проделывает операции, изоморфные операциям карманного калькулятора, решающего ту же задачу. Изоморфизм существует на уровне арифметических действий, а не на уровне нейронов мозга и электрических цепей калькулятора. (Разумеется, при решении любой задачи можно следовать различными путями — но, в принципе, если не человек, то карманный калькулятор может быть запрограммирован вычислить ответ каким-то определенным путем.)


Рис. 106. Поведение натуральных чисел может быть представлено в человеческом мозгу или в компьютерной программе. Эти два представления могут быть затем отображены друг на друга на соответствующем абстрактном уровне.

Представление знаний о мире

Все это кажется убедительным, когда мы говорим о теории чисел, поскольку события там происходят в весьма ограниченном и чистом мире. Его границы, правила и обитатели определены четко, словно в хорошо построенном лабиринте. Такой мир намного менее сложен, чем открытый и неопределенный мир, в котором мы обитаем. Будучи поставлена, задача теории чисел полностью самодостаточна; задача реального мира, напротив, никогда не может быть с уверенностью изолирована от воздействия этого мира. Например, чтобы заменить перегоревшую лампочку, вам может понадобиться подвинуть помойное ведро; при этом вы можете нечаянно толкнуть стоящий поблизости столик и уронить на пол лежавшие на нем таблетки; после чего вам придется подмести пол, чтобы ваша собака их не съела… и так далее, и тому подобное. Таблетки, помойное ведро, собака и электрическая лампочка весьма мало соотносятся между собой, но здесь, благодаря некоему повседневному событию, они оказались в тесной связи. И невозможно предсказать, какие еще предметы оказались бы вовлечены в эти отношения, если бы события немного изменились. С другой стороны, решая задачу теории чисел, вам никогда не придется иметь дело с такими посторонними предметами, как таблетки, собаки, помойные ведра и щетки. (Разумеется, ваше интимное знакомство с означенными предметами может сослужить вам службу, когда вы пытаетесь представить себе задачу в форме геометрических фигур — но это совершенно другое дело.)

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика