Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Но вернемся к вопросу о том, применимо ли сюда слово «выбор». Если программы — не более, чем «сложные шарики, скатывающиеся со сложных горок», то есть ли у них выбор? Конечно, ответ всегда будет субъективен, но я бы сказал, что сюда подходят те же соображения, как и в случае шарика. Однако должен добавить, что использование слова «выбор» здесь весьма привлекательно, хотя это слово и является только удобным сокращением. То, что шахматная программа, в отличие от шарика, заглядывает вперед и выбирает одну из ветвей сложного дерева возможностей, делает ее более похожей на одушевленное существо, чем на программу, вычисляющую квадратный корень из двойки. И все же здесь еще нет ни глубокого самосознания, ни чувства свободной воли.

Теперь давайте вообразим робота, снабженного набором символов. Он помещается в Т-образный лабиринт. Вместо того, чтобы идти за поощрением, расположенным в одном из концов Т, робот запрограммирован таким образом, что он идет налево, когда следующая цифра корня из двойки четная, и направо, когда она нечетная. Робот умеет изменять ситуацию в своих символах таким образом, что может наблюдать за процессом решения. Если каждый раз, когда он приближается к развилке, спрашивать его: «Знаешь ли ты, куда ты сейчас повернешь?», — он будет отвечать «Нет.» Затем он должен будет включить процедуру «решение», вычисляющую следующую цифру квадратного корня из двойки, и затем принять решение. О внутреннем механизме принятия решения роботу ничего не известно — в его системе символов этот механизм выглядит как черный ящик, таинственным и, по-видимому, произвольным образом выдающий команды «направо» или «налево.» Если символы робота не способны установить связи между его решениями и чередованием четных и нечетных цифр в корне из двойки, бедняга будет недоумевать перед своим «выбором». Но можно ли сказать, что этот робот на самом деле что-либо выбирает? Поставьте себя на его место. Если бы вы находились в шарике, катящемся с горы, и могли бы наблюдать его путь, не имея никакой возможности на него повлиять, сказали бы вы, что шарик выбирает дорогу? Разумеется, нет. Если вы не можете повлиять на выбор пути, то совершенно все равно, существуют ли символы.

Теперь мы модифицируем нашего робота, позволив символам — в том числе, символу его самого — влиять на его решения. Перед нами оказывается пример действующей по законам физики программы, которая гораздо ближе подходит к сути проблемы выбора, чем предыдущие примеры. Когда на сцену выходит блочное самовосприятие робота, мы можем идентифицировать себя с ним, поскольку сами действуем подобным образом. Это больше не похоже на вычисление квадратного корня из двойки, где никакие символы не влияли на результат. Однако, если бы мы взглянули на программу нашего робота на низшем уровне, то обнаружили бы, что она выглядит почти так же, как и программа для вычисления корня из двойки. Она выполняет команду за командой и результатом является «налево» или «направо». Но на высшем уровне мы видим, что в оценке ситуации и в принятии решения участвуют символы. Это коренным образом меняет наше восприятие программы. На этом этапе на сцену выходит значение, похожее на то, с каким имеет дело человеческий разум.

Водоворот Гёделя, где скрещиваются все уровни

Если некая внешняя сила теперь предложит роботу пойти налево («Л»), это предложение будет направлено в крутящуюся массу взаимодействующих символов. Там, как лодка, затянутая в водоворот, оно неизбежно окажется втянутым во взаимодействие с символом, представляющим самого робота. Здесь «Л» попадает в Запутанную Иерархию символов, где оно передается наверх и вниз. Само-символ не способен наблюдать за всеми внутренними процессами; таким образом, когда принято конечное решение — «Л», «П» или что-либо вне системы, — система не способна сказать, откуда оно взялось. В отличие от стандартной шахматной программы, которая не следит за собой и не знает, почему она выбирает тот или иной ход, эта программа имеет некоторое понятие о собственных идеях; однако она не может уследить за всеми деталями идущих в ней процессов. Не понимая их полностью, она воспринимает эти процессы интуитивно. Из этого равновесия между само-пониманием и само-непониманием рождается чувство свободной воли.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное