Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Я думаю, что это верно, — мы никогда не можем достаточно глубоко заглянуть в «Музыкальное приношение». Когда мы думаем, что поняли его полностью, мы обнаруживаем в нем нечто новое. Например, в конце того самого «Шестиголосного ричеркара», который Бах отказался импровизировать, он искусно запрятал собственное имя, разделенное между двумя верхними голосами. В «Музыкальном приношении» множество уровней, там можно найти игру с нотами и буквами, хитроумные вариации на Королевскую тему, оригинальные типы канонов, удивительно сложные фуги, красоту и крайнюю глубину чувства, в нем даже присутствует наслаждение многоуровневостью произведения. «Музыкальное приношение» — это фуга фуг, Запутанная Иерархия, подобная Запутанным Иерархиям Эшера и Геделя интеллектуальная конструкция, напоминающая мне о прекрасной многоголосной фуге человеческого разума. Именно поэтому Гедель, Эшер и Бах сплетены в моей книге в эту Бесконечную Гирлянду.


Рис. 148. Два полных цикла тональных гамм Шепарда в нотации для рояля. Громкость каждой ноты пропорциональна её местонахождению: в тот момент, когда верхний голос сходит на нет, очень тихо вступает новый нижний голос. (Напечатано с помощью программы Дональда Бирна «СМУТ»).

Шестиголосный Ричеркар

Ахилл пришел со своей виолончелью в гости к Крабу, чтобы принять участие в вечере камерной музыки с Крабом и Черепахой. Проводив Ахилла в музыкальную комнату, Краб на минуту отлучился, чтобы открыть дверь их общему другу, Черепахе Тортилле. Комната полна всяческого электронного оборудования: патефоны, целые и разобранные, телевизионные экраны, подключенные к пишущим машинкам, и другие приспособления и аппараты весьма странного вида. Среди всех этих хитроумных устройств стоит обыкновенный телевизор. Поскольку это единственная вещь в комнате, которой Ахилл умеет пользоваться, он крадучись подходит к телевизору и, воровато оглянувшись на дверь, начинает нажимать на кнопки. Вскоре он находит программу, где шесть ученых обсуждают свободу воли и детерминизм. Он смотрит пару минут и затем, презрительно усмехнувшись, выключает телевизор.

Ахилл: Я вполне могу обойтись без такой программы. В конце концов, всякому, кто когда-либо об этом думал, ясно… Я имею в виду, что это совсем нетрудный вопрос, как только вы понимаете, как его разрешить… Скорее, концептуально это все можно разъяснить, если иметь в виду, что… или, по крайней мере, представляя себе ситуацию, в которой… Гммм… Я-то думал, что мне все это вполне ясно. Пожалуй, эта передача все же могла бы оказаться полезной.

(Входит Черепаха со скрипкой.)

А вот и наша скрипачка! Усердно ли вы занимались на этой неделе, г-жа Ч? Я играл по меньшей мере два часа в день — разучивал партию виолончели в «Трио-сонате» из «Музыкального приношения» Баха. Это суровый режим, но он приносит плоды: как у нас, воинов, говорится: трудно в учении — легко в бою!

Черепаха: Я вполне могу обойтись без такой программы. Несколько минут упражнений в свободное время — это все, что мне нужно, чтобы быть в форме!

Ахилл: Везет же некоторым! Хотел бы я, чтобы музыка давалась мне так же легко… Но где же сам хозяин?

Черепаха: Наверное, пошел за флейтой. А вот и он!

(Входит Краб с флейтой.)

Ахилл: Знаете, м-р Краб, когда я на прошлой неделе так ревностно разучивал «Трио-сонату», у меня в голове всплывали самые странные картины: весело жующие шмели, меланхолически жужжащие коровы и масса всяких других зверей. Не правда ли, какая могучая сила заключена в музыке?

Краб: Я вполне могу обойтись без такой программы. На мой взгляд, нет музыки серьезнее, чем «Музыкальное приношение».

Черепаха: Вы, наверное, шутите, Ахилл? «Музыкальное приношение» — вовсе не программная музыка!

Ахилл: Просто я люблю животных, что бы вы, консерваторы, не говорили.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное