Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Здесь мы видим молодого человека «внутри самого себя», в том смысле, какой получается от соединения трех аспектов «внутренности». Эта диаграмма напоминает нам о парадоксе Эпименида с его одноступенчатой автореференцией, в то время как двухступенчатая диаграмма похожа на пару утверждений, каждое из которых ссылается на другое. Затянуть Петлю туже не удается, но можно ее ослабить, вводя любое количество промежуточных уровней, таких как «рама картины», «аркада» и «здание». Сделав так, мы получим многоступенчатые Странные Петли, диаграммы которых изоморфны «Водопаду» (рис. 5) или «Спуску и подъему» (рис. 6) Количество ступеней определяется нашим чувством того, что «естественно», что может варьироваться в зависимости от контекста, цели, или нашего настроения. В конечном итоге, восприятие уровней — это вопрос интуиции и художественного вкуса.

Оказываются ли зрители, глядящие на «Картинную галерею,» затянутыми «в самих себя»? На самом деле, этого не происходит. Нам удается избежать этого водоворота благодаря тому, что мы находимся вне системы. Глядя на картину, мы видим то, что незаметно молодому человеку, — например, подпись Эшера «МСЕ» в центральном «слепом пятне». Хотя это пятно кажется дефектом, скорее всего, дефект заключается в наших ожиданиях, поскольку Эшер не мог бы закончить этот фрагмент картины без того, чтобы не вступить в противоречие с правилами, по которым он ее создавал. Центр водоворота остается — и должен оставаться — неполным. Эшер мог бы сделать его сколь угодно малым, но избавиться от него совсем он не мог. Таким образом мы, глядя снаружи, видим, что «Картинная галерея» неполна, чего молодой человек на картине заметить не в состоянии. Здесь Эшер дал художественную метафору Теоремы Геделя о неполноте. Поэтому Эшер и Гёдель так тесно переплетены в моей книге.

Водоворот Баха, где скрещиваются все уровни

Глядя на диаграммы Странных Петель, мы не можем не вспомнить о Естественно Растущем Каноне из «Музыкального приношения». Его диаграмма состояла бы из шести ступеней, как показано на рис. 147. К сожалению, когда канон возвращается к до, он оказывается на октаву выше, чем в начале.


Рис. 147. Схема гексагональной модуляции Баховского Естественно Растущего Канона выглядит как настоящая Странная Петля, если использовать тональную систему Шепарда.

Однако возможно сделать так, что Канон вернется точно к началу, если использовать так называемую тональную систему Шепарда, названную в честь ее автора, психолога Роджера Шепарда. Принцип тонов Шепарда показан на рис. 148. Он заключается в том что параллельные гаммы играются в нескольких различных октавах. Каждая нота имеет собственную независимую интенсивность, по мере того, как мелодия становится выше эта интенсивность меняется. Таким образом вы добиваетесь того что высшая октава постепенно переходит в низшую. Как раз в тот момент, когда вы ожидаете оказаться на октаву выше, интенсивности изменились так, что вы оказываетесь в точности там же, где начали. Так можно «бесконечно подниматься», никогда не оказываясь выше! Можете попробовать сыграть это на пианино. Еще лучше получается, когда тона точно воспроизводятся с помощью компьютера. При этом достигается удивительно полная иллюзия.

Это замечательное музыкальное открытие позволяет сыграть Естественно Растущий Канон так что, «поднявшись» на октаву, он сливается сам с собой. Эта идея, принадлежащая мне и Скотту Киму, была приведена в исполнение с помощью компьютерной музыкальной системы и результат был записан на магнитофон. Получившийся эффект едва различим, но вполне реален. Интересно то, что сам Бах, по-видимому, в некотором роде осознавал возможность подобных гамм, поскольку в его музыке можно найти пассажи разрабатывающие приблизительно такую же идею — например в середине «Фантазии из органной „Фантазии и фуги в соль миноре“».

Ханс Теодор Давид своей книге «„Музыкальное приношение“ И. С. Баха» (Hans Theodore David «J.S. Bach's „Musical Offering“») пишет:

На всем протяжении Музыкального приношения читатель, исполнитель или слушатель должен искать Королевскую тему во всех ее формах. Таким образом все это произведение — ricercar в первоначальном буквальном смысле слова.[91]

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное