Следовательно, у нас есть мысленная модель натуральных чисел, их структуры, которую изучают математики. С другой стороны, первая теорема Гёделя о неполноте доказывает, что эта модель не может быть полностью охарактеризована синтаксическими методами, то есть если мы ограничимся синтаксическими методами рассуждения, всегда найдутся недостижимые истины. Синтаксических методов доказательства недостаточно, чтобы постичь все свойства модели, которую мы не способны понять семантически. Это предполагает, согласно Гёделю, что эта мысленная модель, эти сущности, которые мы называем натуральными числами, со всеми их свойствами и взаимоотношениями, существуют в платонической реальности, находящейся за гранью чистой лингвистики (рисунок 2).
Выводы Гёделя были оспорены современными логиками, такими как Соломон Феферман или Пану Раатикайнен, утверждавшими, что аргументы Гёделя основываются на предположениях, справедливость которых можно оспорить (как тот факт, что в каждом человеческом мозге существует модель натуральных чисел).
Дело в том, что сегодня пока еще нет единодушного мнения о том, какая связь существует между теоремами Гёделя и природой математических объектов. В любом случае прошло чуть более 80 лет с момента публикации теорем Гёделя, а это небольшой срок для того, чтобы делать какой-то определенный математический вывод.
Во многих популярных книгах говорится, что теорема Гёделя о неполноте доказывает невозможность найти множество аксиом арифметики, которое позволило бы доказать все истины этой теории; но это утверждение на самом деле некорректно. Как мы уже много раз говорили, это правда, только если ограничиваться только методами доказательства, принятыми программой Гильберта. Однако существуют и другие методы.
Например, вспомним аксиомы Пеано, то есть аксиомы, относящиеся к натуральным числам и включающие в качестве первоначальных составляющих сумму, произведение и функцию последующего элемента.
Аксиома 1: нет ни одного числа с последующим элементом 1.
Аксиома 2: если у двух чисел один и тот же последующий элемент, то они равны.
Аксиома 3: последующий элемент для х — это х + 1.