for iColor := 0 to 255 do begin
ddgr.red[iColor] := dwGamma;
ddgr.green[iColor] := dwGamma;
ddgr.blue[iColor] := dwGamma;
dwGamma := dwGamma + g_lGammaRamp;
end;
// Устанавливаем текущую "палитру"
hr := g_pGainmaControl. SetGammaRamp (0, ddgr) ;
if(FAILED(hr)) then begin
Result := hr;
Exit
end;
Result := S_OK;
end;
Привожу еще один вариант использования модуля DDuti8 (проект каталога Ех05) - иллюстрацию непосредственной работы с пикселами поверхности. Здесь таким способом подготавливаются поверхности спрайтов. Пример рассчитан на работу в 16-битном режиме и использует указатели PWORD. Принципиально ничего нового в коде не появилось. Библиотека DDUtil8 ничего не изменила в этой части, поэтому не стану подробно разбирать код. Только обращаю ваше внимание на то, что этот пример, подобно предыдущему, корректно работает с любым форматом пиксела, поскольку опирается на присутствующие битовые маски.
Надеюсь, такого беглого знакомства с библиотекой DDUtil8 для вас оказалось достаточным для того, чтобы получить представление о ней.
Вернемся к обычному для этой книги подходу, лишенному объектной ориентированности. Рассмотрим следующий пример - проект, располагающийся в каталоге Ех06. Пример можно отнести к разряду классических, он является моей интерпретацией программы stretch.cpp из DirectX 6.0 SDK. Это оконное приложение, на экране выводится образ вращающегося в пространстве тора (рис. 4.1).
Мультфильм намеренно подготовлен таким образом, чтобы создать у зрителя иллюзию трехмерной графики. На самом деле последовательно выводятся отдельные кадры с изображением различных фаз поворота тора.
Размер отдельного кадра 64x64 пиксела. Все кадры записаны в одно растровое изображение donut.bmp в шесть рядов по десять кадров. Растр загружается на поверхность FDDSImage. При перерисовке экрана на первичную поверхность выводится прямоугольник очередной фазы поворота тора:
function TfrmDD.UpdateFrame : HRESULT;
var
rcRect : TRECT;
begin
Inc (Frames);
ThisTickCount := GetTickCount;
if ThisTickCount - LastTickCount > TimeDelay then begin
FPS : = PChar ('FPS = ' + Format('%6.2f,
[Frames * 1000 / (ThisTickCount - LastTickCount)])); Caption := FPS; Frames := 0;
// Наращиваем текущий кадр; всего 60 кадров
CurrentFrame := (CurrentFrame + 1) mod 61;
// Прямоугольник очередного кадра; "shl 6" равносильно " * 64" SetRect (rcRect,
(CurrentFrame mod 10) shl 6,
(CurrentFrame div 10) shl 6,
(CurrentFrame mod 10 + 1) shl 6,
(CurrentFrame div 10 + 1) shl 6);
LastTickCount := GetTickCount;
end;
// Вывод кадра на первичную поверхность
Result := FDDSPrimary.Blt(OrcDest, FDDSImage, @rcRect,
DDBLT_WAIT, nil) ;
end;
Принципиально этот пример отличается от примеров предыдущей главы только тем, что при каждой перерисовке кадра выводится не вся вторичная поверхность, а только ее фрагмент.
Для оптимизации код, связанный с определением позиции окна вывода на экране, я перенес в обработчик onResize формы. Для корректного поведения при перемещении окна этот же код вызывается в ловушке соответствующего сообщения WM_MOVE:
procedure TfrmDD.WindowMove (var Msg: TWMMove); // Перемещение окна
begin
FormResize (nil); // Определение нового положения окна
end;
procedure TfrmDD.FormResize(Sender: TObject);
var
p : TPoint;
begin
p.X := 0;
p.Y := 0;
Windows.ClientToScreen(Handle, p);
Windows.GetClientRect(Handle, rcDest);
OffsetRect(rcDest, p.X, p.Y);
end;
Вдогонку рассмотренному примеру привожу проект каталога Ех07, идею которого я также позаимствовал из набора примеров SDK. В данном примере эмулируется наложение выводимого тора с содержимым рабочего стола, наподобие одной из программ предыдущей главы. Пример не очень хорош и предложен скорее "для массовости". Здесь содержимое экрана копируется только один раз, при запуске приложения. Поэтому при изменении подлинного фона тора возникает ощущение некорректности работы приложения. Если же копировать подложку при каждом обновлении фазы поворота тора, то вместе с фоном копируется изображение самого тора, оставшееся с предыдущего вывода. Попробуйте развить этот пример. Из него может получиться занятная программа, если изменения во всех кадрах будут находиться только в пределах первоначального силуэта.
Хранитель экрана
В этом разделе мы начнем работу по созданию оригинального хранителя экрана, попробуем реализовать наши полученные знания в проекте, имеющем не только познавательную ценность. Также мы решим для себя вопрос, возможно ли в принципе создать на Delphi приложение, использующее DirectDraw со множеством образов, выполняющееся с удовлетворительной скоростью.
Работа нашего хранителя экрана будет заключаться в том, что по экрану станут проплывать рыбки и полупрозрачные пузырьки воздуха (рис. 4.2).
Образы рыбок для этой программы любезно предоставлены Kelly Villoch. Рыбки будут сновать в разные стороны с различной скоростью, а пузырьки подниматься плавно вверх и лопаться, достигнув верхнего края экрана.