Читаем Гравитация От хрустальных сфер до кротовых нор полностью

<p>Глава 7. Наблюдательные, подтверждения ОТО</p>

Эксперимент — истинный посредник между человеком и природой.

Леонардо да Винчи
<p>Решение Шварцшильда</p>

Для того чтобы обсудить многие эффекты ОТО, необходимо познакомиться с одним из самых важных решений (а возможно, и самым важным) уравнений ОТО — решением немецкого астронома Карла Шварцшильда (1873–1916). Оно получено в 1916 году, всего лишь через несколько месяцев после публикации Эйнштейном своих уравнений гравитационного поля. Это решение соответствует статическому сферически симметричному вакуумному пространству–времени. (О вакуумных решениях уравнений Эйнштейна см. Дополнение 4.) Слова, выделенные курсивом — это условия (ограничения), при которых искалось решение. Эти же условия определяют, чему в реальности должно соответствовать найденное решение — это пространство–время вокруг изолированного сферически симметричного тела. «Изолированного» — это в идеале, а в реальности — вокруг тела, достаточно удалённого от всех остальных тел. Таким образом, в очень хорошем приближении это решение описывает и гравитационное поле вокруг Солнца и каждой из планет Солнечной си стемы, шаровых звёздных скоплений. Поэтому с использованием именно этого решения были проверены первые эффекты ОТО.

Решение Шварцшильда в математическом плане простое, поэтому мы немного с ним повозимся, Собственно, решением уравнений явилась метрика:

Здесь также в силу сферической симметрии мы опустили угловую часть, оставив только временную и радиальную. С — постоянная интегрирования, без дополнительных предположений или принципов её определить невозможно. Здесь самое время обратиться к принципу соответствия. При «бесконечном» удалении от центра r → ∞ эта метрика обращается в метрику пространства Минковского в сферических координатах, точно так же, как и метрика пространства–времени Ньютона, которую мы уже обсуждали. Значит, на достаточном удалении нам необходимо сравнить новую метрику с метрикой пространства–времени Ньютона, обсуждавшейся в предыдущей главе. При аккуратной процедуре приближения оказывается, что здесь основное возмущение в метрику плоского мира вносится только первым слагаемым в выражении для интервала. Нужно сравнить его с аналогичным членом в метрике Ньютона. Это нам даст C = -2GM/c2, после чего метрика Шварцшильда запишется в окончательном виде:

где величина rg = 2GM/c2 называется гравитационным радиусом. Мы так подробно обсуждаем решение Шварцшильда потому, что это ещё и базовое решения для чёрных дыр, речь о которых впереди. Также потом мы обсудим смысл гравитационного радиуса. А сейчас важно отметить, что появился параметр, определяющий решение, — это масса тела М, обращение в нуль этого параметра превращает решение Шварцшильда в метрику плоского мира.

<p>Классические тесты теории Эйнштейна</p>

Радостные новости сегодня! Лоренц телеграфировал мне, что английская экспедиция доказала отклонение лучей света вблизи Солнца.

Альберт Эйнштейн в письме матери

Теперь мы во всеоружии, чтобы перейти к классическим тестам, подтвердившим ОТО. Уже в 1915 году, сразу после опубликования своих уравнений, Эйнштейн назвал три эксперимента, результаты которых должны соответствовать выводам новой теории.

Первый из этих экспериментов — отклонение луча света в гравитационном поле массивного тела. Из‑за слабости эффекта в роли массивного тела в то время могло выступить только Солнце. А отклонять оно может свет далёкой звезды, координаты которой известны достаточно точно.

Второй эксперимент — смещение перигелиев планет. Мы уже говорили об аномальном смещении перигелия Меркурия, о котором было известно с середины XIX века.

Третий эксперимент — эффект гравитационного красного смещения. Его суть в том, что электромагнитное излучение, испущенное из окрестности гравитируещего тела, должно терять энергию. Это выражается в том, что частота сигнала уменьшается, то есть его спектр смещается в красную сторону. Для точного теоретического описания этих эффектов как раз было необходимо решение Шварцшильда, которое не замедлило появиться, как мы уже отметили и только что представили.

Перейти на страницу:

Похожие книги

Москва и Орда
Москва и Орда

Монография посвящена отношениям Московского княжества и Золотой Орды с конца XIII до начала XVI в. В ней, в отличие от предшествующей историографии, уделявшей серьёзное внимание лишь двум ключевым эпизодам — Куликовской битве и освобождению от власти Орды, — последовательно рассматривается развитие московско-ордынских отношений на протяжении двух с половиной столетий. В результате выясняется, что устоявшиеся (хотя и противоречащие друг другу) постулаты — «поддержка Ордой Москвы» и «борьба с ордынским игом» — мало соответствуют исторической реальности. По-новому решаются такие вопросы, как отношение к Орде первых московских князей — Даниила Александровича и Юрия Даниловича, последствия конфликта Дмитрия Донского с Тохтамышем 1382 г., датировка и обстоятельства освобождения Москвы от ордынской зависимости.Для историков и широкого круга читателей, интересующихся историей Отечества.

Антон Анатольевич Горский

История / Научная литература / Образование и наука
Т. 2.  Ересиарх и К°. Убиенный поэт
Т. 2. Ересиарх и К°. Убиенный поэт

Гийом Аполлинер (1880–1918) — одно из самых значительных имен в истории европейской литературы. Завершив классический период французской поэзии, он открыл горизонты «нового лирического сознания». Блестящий прозаик, теоретик искусства, историк литературы, критик, журналист, драматург — каждая область его творчества стала достоянием культуры XX века.Впервые выходящее трехтомное Собрание сочинений Аполлинера представляет на суд читателя не только избранную лирику Гийома Аполлинера, но прежде всего полный перевод его прозаических сборников «Ересиарх и Кº» (1910) и «Убиенный поэт» (1916) — книг, в которых Аполлинер выступает предвестником главных жанров европейской прозы нашего времени. Аполлинер-прозаик находится в центре традиции, идущей от Гофмана и Эдгара По к Марселю Эме и Пьеру Булю.Во второй том Собрания сочинений вошли сборники рассказов «Ересиарх и Кº» и «Убиенный поэт».

Гийом Аполлинер

Научная литература / Прочая научная литература / Образование и наука