Читаем Гравитация От хрустальных сфер до кротовых нор полностью

Отклонение луча звезды в гравитационном поле Солнца. Начнём с отклонения света и истории обсуждения проблемы, начавшейся задолго до релятивистской эпохи. Известно, что отклонение лучей света от прямой линии обсуждалось после создания Ньютоном классической механики, и как части её — оптики. Сам Ньютон был убеждённым сторонником корпускулярной теории света. А раз так, то «световые частицы» должны двигаться в поле тяготеющего центра точно так же, как и всякие другие тела — по линиям конического сечения. Поскольку скорость света Ньютону уже была известна (она очень большая по сравнению со скоростью планет), то траектории «световых частиц» должны быть скорее гиперболическими. Ньютону было известно, конечно, как вычислять угол между асимптотами, см. рис 7.1. Поэтому очень вероятно, что Ньютону была известна формула типа a = 2GM/c2R. Она как раз определяет угол отклонения в поле тела массы М частицы, движущейся со скоростью света на расстоянии R от тела. Скорее всего ему была известна также величина отклонения луча света вблизи поверхности Солнца, поскольку все необходимые значения констант ко времени опубликования «Начал» были известны. Однако часто Ньютон не публиковал результаты, а форма представления их была очень сложной. Поэтому не известно наверняка, что Ньютон эту формулу выписывал. Кроме того, по тем временам не представлялось возможным измерить это отклонение света в поле Солнца, что могло поубавить заинтересованность в проблеме.

Рис. 7.1. Отклонение луча звезды в гравитационном поле Солнца

Хотя приведённая формула не была опубликована, она фигурировала в переписке нескольких учёных. Наконец, в 1801 году немецкий астроном Иоганн Георг фон Зольднер (1776— 1833) представил в Берлинский астрономический ежегодник статью об отклонении луча света в гравитационном поле звезды, которая была опубликована в 1804 году и содержала эту замечательную формулу. Однако даже после публикации, она осталась на долгое время забытой.

О формуле Зольднера вспомнили в 1911 году, когда Эйнштейн в рамках специальной теории относительности получил точно такую же. К началу XX века телескопы уже давали возможность измерить угол отклонения луча света вблизи Солнца. Однако для такого измерения было необходимо затмение Солнца Луной, чтобы были видны звезды вблизи его края. Группа астрономов из Берлинской обсерватории заинтересовалась предсказаниями Эйнштейна и собралась провести измерения во время предстоящего полного солнечного затмения в Крыму в августе 1914 года, но началась Первая мировая война. А теория тем временем развивалась. В 1915 году на основе уже общей теории относительности, Эйнштейн получил новое значение для угла отклонения:

в два раза большее зольднеровского или своего 1911 года. Последовательный вывод этой формулы производится с помощью решения Шварцшильда. Уравнение траектории луча задаётся, как светоподобная геодезическая в пространстве–времени Шварцшильда, она имеет простой вид: ds2 = 0. Единственным исходным условием должно быть направление света далёкой звезды на край Солнца, то есть при расчётах учитывается тот факт, что луч проходит от тяготеющего центра на расстоянии радиуса Солнца R.

Итак, после этого заявления Эйнштейна нужно было проверять обе формулы, Наконец, во время ближайшего полного солнечного затмения 29 мая 1919 года группой английских астрономов измерения отклонения луча света были произведены. Перед группой стояла задача после сделанных наблюдений выбрать один из трёх следующих ответов:

1) гравитационное поле Солнца не оказывает влияния на траекторию луча света;

2) гравитационное поле Солнца действует на световой луч как на обычные частицы в силу закона тяготения Ньютона, что приводит к кажущемуся смещению изображения звезды у края солнечного диска, равному 0,87»;

3) отклонение изображения звезды согласуется с предсказаниями общей теории относительности и равно 1,75»,

В пределах ошибок измерений был подтверждён третий ответ. И это было триумфом новой теории.

Перейти на страницу:

Похожие книги

Москва и Орда
Москва и Орда

Монография посвящена отношениям Московского княжества и Золотой Орды с конца XIII до начала XVI в. В ней, в отличие от предшествующей историографии, уделявшей серьёзное внимание лишь двум ключевым эпизодам — Куликовской битве и освобождению от власти Орды, — последовательно рассматривается развитие московско-ордынских отношений на протяжении двух с половиной столетий. В результате выясняется, что устоявшиеся (хотя и противоречащие друг другу) постулаты — «поддержка Ордой Москвы» и «борьба с ордынским игом» — мало соответствуют исторической реальности. По-новому решаются такие вопросы, как отношение к Орде первых московских князей — Даниила Александровича и Юрия Даниловича, последствия конфликта Дмитрия Донского с Тохтамышем 1382 г., датировка и обстоятельства освобождения Москвы от ордынской зависимости.Для историков и широкого круга читателей, интересующихся историей Отечества.

Антон Анатольевич Горский

История / Научная литература / Образование и наука
Т. 2.  Ересиарх и К°. Убиенный поэт
Т. 2. Ересиарх и К°. Убиенный поэт

Гийом Аполлинер (1880–1918) — одно из самых значительных имен в истории европейской литературы. Завершив классический период французской поэзии, он открыл горизонты «нового лирического сознания». Блестящий прозаик, теоретик искусства, историк литературы, критик, журналист, драматург — каждая область его творчества стала достоянием культуры XX века.Впервые выходящее трехтомное Собрание сочинений Аполлинера представляет на суд читателя не только избранную лирику Гийома Аполлинера, но прежде всего полный перевод его прозаических сборников «Ересиарх и Кº» (1910) и «Убиенный поэт» (1916) — книг, в которых Аполлинер выступает предвестником главных жанров европейской прозы нашего времени. Аполлинер-прозаик находится в центре традиции, идущей от Гофмана и Эдгара По к Марселю Эме и Пьеру Булю.Во второй том Собрания сочинений вошли сборники рассказов «Ересиарх и Кº» и «Убиенный поэт».

Гийом Аполлинер

Научная литература / Прочая научная литература / Образование и наука