Теперь можно перейти к третьему эффекту, предсказанному Эйнштейном. Поскольку мы ограничились статическим случаем, для которого метрический коэффициент goo зависит только от пространственных координат, то от бесконечно малых по времени величин можно перейти к конечным. Таким образом, в каждой точке пространства τ = (
Теперь вспомним, что частота ω электромагнитного сигнала обратно пропорциональна течению времени. Таким образом, в отсутствии гравитационного поля ω0 ~ 1/t. А поскольку в реальности все физические явления в данной точке происходят в темпе истинного времени, то частота электромагнитного сигнала в какой‑либо точке в окрестности тела ω ~ l/τ. Поэтому в приближении слабого поля
Это означает, что если в данную точку в окрестности тела сигнал пришёл издалека (из бесконечности, где гравитационный потенциал фактически исчезает), то его частота в этой точке станет больше, чем на бесконечности — произойдёт так называемое «фиолетовое» смещение. И наоборот, если пошлём сигнал от тяготеющего тела в область плоского пространства–времени, то там он вое примется с меньшей частотой, то есть его спектр сместится в «красную» область. Уменьшение частоты означает уменьшение энергии сигнала. То есть, покидая тяготеющее тело, электромагнитный сигнал ослабевает, что естественно. На рис. 7.3 отображена следующая ситуация.
Из двух идентичных источников света один расположен на поверхности массивной планеты, другой — далеко, как от неё, так и от всех остальных небесных тел. Наблюдатель находится рядом с последним источником и детектирует свет обоих. Левая картинка соответствует наблюдениям источника на планете, правая — наблюдениям собственного источника. Сравнивая свет от обоих источников, он найдёт, что свет от планеты «покраснел» (поскольку его частота меньше частоты его собственного источника), и часы на планете идут медленнее его часов.
Рис. 7.3. Замедление времени
Также можно сравнить частоту сигнала, если он посылается между двумя точками пространства с разными гравитационными потенциалами. Снова вернёмся к приближению слабого поля для изолированного тела:
Формула означает, что сигнал, испущенный в точке 1, регистрируется в точке 2. Тогда, например, если точка 2 дальше от центра, чем точка 1, то в ней частота станет меньше. Именно последняя формула лежит в основе третьего эффекта, Если его проверять на Земле, то нужно приёмник разместить выше источника. Из формулы следует, что ожидаемая разность частот в наименьшем приближении будет пропорциональной разности
В 1925 году гравитационное красное смещение света, испускаемого сверхплотной звездой–компаньоном Сириуса, впервые наблюдал американский астроном Уолтер Адамс (1876–1956). Прямой эксперимент по проверке существования гравитационного красного смещения в поле Земли был осуществлён только в 1960 году сотрудниками Гарвардского университета Робертом Паундом и Гленом Ребкой. Они измеряли сдвиг частоты гамма–излучения, пучок которого направляли вверх и вниз на 23 м по вертикали внутри здания лаборатории. Полученное в этом эксперименте значение красного смещения (относительный сдвиг частоты 2.57*10–15) совпало с предсказанием теории Эйнштейна с точностью до 1%.
Эффект Шапиро