Читаем Григорий Перельман и гипотеза Пуанкаре полностью

Геодезическая линия — кривая определенного типа, обобщение понятия «прямая» в искривленных пространствах. Конкретное определение зависит от типа пространства. Например, на двумерной поверхности, вложенной в евклидово трехмерное пространство, геодезические линии — это линии, достаточно малые дуги которых являются на этой поверхности кратчайшими путями между их концами. На плоскости это будут прямые, на круговом цилиндре — винтовые линии, на сфере — большие круги. Геодезические линии активно используются в релятивистской физике. Так, траектория свободно падающего незаряженного пробного тела в общей теории относительности и вообще

-238-

в метрических теориях гравитации является геодезической линией наибольшего собственного времени, то есть времени, измеряемого часами, движущимися вместе с телом. Часто физическую теорию, обладающую действием или выраженную в гамильтоновой форме, можно переформулировать как задачу отыскания геодезических линий на некотором римановом или псевдоримановом многообразии.

Гильберт Давид (1862–1943) — выдающийся немецкий математик-универсал, внес значительный вклад в развитие многих математических разделов. После смерти Анри Пуанкаре долгое время считался признанным мировым лидером математиков и философов-неопозитивистов. Работы Гильберта по теории алгебраических чисел преобразовали эту область математики и стали исходным пунктом ее последующего развития. Гильберт ввел ряд важных новых понятий — теорию числовых полей, вариационное исчисление и функциональный анализ, в частности, в спектральную теорию линейных операторов.

Гиперповерхность — срез четырехмерного пространства-времени.

Гиперсфера — сфера в гипотетическом многомерном пространстве.

Гипотеза Пуанкаре — топологическая задача, дающая достаточное условие того, что пространство является трехмерной сферой с точностью до деформации. В исходной форме утверждает, что всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере. Обобщенная гипотеза Пуанкаре содержит утверждение, что для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей. Исходная гипотеза Пуанкаре является частным случаем обобщенной гипотезы при n = 3. Она сформулирована французским математиком Пуанкаре в 1904 году. Попытки доказать гипотезу привели к многочисленным продвижениям в топологии многообразий. Доказательства обобщенной гипотезы Пуанкаре для n > 5 получены в начале 1960-1970-х годов почти одновременно Смейлом и Столлингсом (независимо и другими методами). Для n > 1 его доказательство было распространено на случаи n = 5 и 6 Зееманом. Доказательство значительно более трудного случая n = 4 было получено только в 1982 году Фридманом. Из теоремы Новикова о топологической инвариантности характеристических классов Понтрягина следует, что существуют гомотопически эквивалентные, но не гомеоморфные многообразия в высоких размерностях. Доказательство исходной гипотезы Пуанкаре и более общей гипотезы Терстона было найдено только в 2002 году Г. Я. Перельманом. Впоследствии доказательство Перельмана было проверено и представлено в развернутом виде как минимум тремя группами ученых. Доказательство использует поток Риччи

-239-

с хирургией и во многом следует плану, намеченному Гамильтоном, который также первым применил поток Риччи.

Голая сингулярность — пространственно-временная сингулярность, не окруженная горизонтом событий.

Гомеоморфизм (от греч. homoios — подобный и гомео morphe — вид, форма) — топологическое взаимно-однозначное и непрерывное отображение, обратное к которому тоже непрерывно. Пространства, связанные гомеоморфизмом, топологически неразличимы.

Гомоморфный образ — образ математического объекта, имеющего структуру полугруппы, группы, кольца, алгебры при гомоморфном отображении. Иногда говорят и о гомоморфных образах других математических объектов, например графов.

Гомология — одно из основных понятий алгебраической топологии. Она дает возможность строить алгебраический объект (группу или кольцо), который является топологическим инвариантом пространства. Простейший пример: на поверхности замкнутая линия гомологична нулю, если она ограничивает кусок поверхности, который отделяется от нее, если мы произведем разрез по этой линии. Например, на сфере любая замкнутая линия является таковой, а на торе хотя и существуют гомологичные нулю замкнутые линии, но разрез по меридиану или параллели не приведет к отделению куска поверхности.

Гомоморфизм (от греч. homos — равный, одинаковый и morphe — вид, форма) — морфизм в категории алгебраических систем. Это отображение алгебраической системы, сохраняющее основные операции и основные соотношения.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии