Читаем Язык программирования C#9 и платформа .NET5 полностью

<p id="AutBody_Root1143"><strong>Роль туннельных маршрутизируемых событий</strong></p>

Строго говоря, маршрутизируемые события по своей природе могут быть пузырьковыми (как было описано только что) или туннельными. Туннельные события (имена которых начинаются с префикса Preview — наподобие PreviewMouseDown) спускаются от самого верхнего элемента до внутренних областей определения дерева объектов. В общем и целом для каждого пузырькового события в библиотеках базовых классов WPF предусмотрено связанное туннельное событие, которое возникает перед его пузырьковым аналогом. Например, перед возникновением пузырькового события MouseDown сначала инициируется туннельное событие PreviewMouseDown.

Обработка туннельных событий выглядит очень похожей на обработку любых других событий: нужно просто указать имя обработчика события в разметке XAML (или при необходимости применить соответствующий синтаксис обработки событий C# в файле кода) и реализовать такой обработчик в коде. Для демонстрации взаимодействия туннельных и пузырьковых событий начните с организации обработки события PreviewMouseDown для объекта outerEllipse:

         MouseDown ="outerEllipse_MouseDown"

         PreviewMouseDown ="outerEllipse_PreviewMouseDown"

         Width ="50" Cursor="Hand" Canvas.Left="25" Canvas.Top="12"/>

Затем модифицируйте текущее определение класса С#, обновив обработчики событий (для всех объектов) за счет добавления данных о событии в переменную-член _mouseActivity типа string с использованием входного объекта аргументов события. В результате появится возможность наблюдать за потоком событий, появляющихся в фоновом режиме.

public partial class MainWindow : Window

{

  string _mouseActivity = string.Empty;

  public MainWindow()

  {

    InitializeComponent();

  }

  public void btnClickMe_Clicked(object sender, RoutedEventArgs e)

  {

    AddEventInfo(sender, e);

    MessageBox.Show(_mouseActivity, "Your Event Info");

    // Очистить строку для следующего цикла.

    _mouseActivity = "";

  }

  private void AddEventInfo(object sender, RoutedEventArgs e)

  {

    _mouseActivity += string.Format(

      "{0} sent a {1} event named {2}.\n", sender,

      e.RoutedEvent.RoutingStrategy,

      e.RoutedEvent.Name);

  }

  private void outerEllipse_MouseDown(object sender, MouseButtonEventArgs e)

  {

    AddEventInfo(sender, e);

  }

  private void outerEllipse_PreviewMouseDown(object sender,

                                             MouseButtonEventArgs e)

  {

    AddEventInfo(sender, e);

  }

}

Обратите внимание, что ни в одном обработчике событий пузырьковое распространение не останавливается. После запуска приложения отобразится окно с уникальным сообщением, которое зависит от места на кнопке, где был произведен щелчок. На рис. 25.15 показан результат щелчка на внешнем объекте Ellipse.

Итак, почему события WPF обычно встречаются парами (одно туннельное и одно пузырьковое)? Ответ можно сформулировать так: благодаря предварительному просмотру событий появляется возможность выполнения любой специальной логики (проверки достоверности данных, отключения пузырькового распространения и т.п.) перед запуском пузырькового аналога событий. В качестве примера предположим, что создается элемент TextBox, который должен содержать только числовые данные. В нем можно было бы обработать событие PreviewKeyDown; если выясняется, что пользователь ввел нечисловые данные, то пузырьковое событие легко отменить, установив свойство Handled в true.

Как несложно было предположить, при построении специального элемента управления, который поддерживает специальные события, событие допускается реализовать так, чтобы оно могло распространяться пузырьковым (или туннельным) образом по дереву разметки XAML. В настоящей главе мы не рассматриваем процесс создания специальных маршрутизируемых событий (хотя он не особо отличается от построения специального свойства зависимости). Если интересно, загляните в раздел "Routed Events Overview" ("Обзор маршрутизируемых событий") документации по .NET Core, где предлагается несколько обучающих руководств, которые помогут в освоении этой темы.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Разработка приложений в среде Linux. Второе издание
Разработка приложений в среде Linux. Второе издание

Книга известных профессионалов в области разработки коммерческих приложений в Linux представляет СЃРѕР±РѕР№ отличный справочник для широкого круга программистов в Linux, а также тех разработчиков на языке С, которые перешли в среду Linux из РґСЂСѓРіРёС… операционных систем. РџРѕРґСЂРѕР±но рассматриваются концепции, лежащие в основе процесса создания системных приложений, а также разнообразные доступные инструменты и библиотеки. Среди рассматриваемых в книге вопросов можно выделить анализ особенностей применения лицензий GNU, использование СЃРІРѕР±одно распространяемых компиляторов и библиотек, системное программирование для Linux, а также написание и отладка собственных переносимых библиотек. Р

Майкл К. Джонсон , Эрик В. Троан

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT