Если описывать колебательные химические реакции
Во-вторых, колебательный процесс невозможен без источника энергии, роль которого в рассмотренной модели «хищник – жертва» играет все то, чем питаются насекомые[35]. Если их лишить пищи, то они вымрут, а следовательно, и у лягушек не станет пищи.
В реакции Белоусова – Жаботинского источником энергии служит органическая малоновая (лимонная) кислота. При ее полном окислении колебания в реакции затухают, а затем и сама реакция прекращается.
И что интересно, колебательные процессы в биологии, как то: процессы типа сердечной деятельности, перистальтики кишечника, биологические часы и даже численность популяций – все они описываются одними и теми же дифференциальными уравнениями.
Закон устойчивого неравновесия
Первой работой в области неравновесной термодинамики в биологии является опубликованная в 1935 году книга венгерско-советского биолога-теоретика Э. Бауэра «Теоретическая биология», в которой был сформулирован «Всеобщий закон биологии»: Все и только живые системы никогда не бывают в равновесии и постоянно исполняют за счет своей свободной энергии работу против равновесия, требуемого законами физики и химии при существующих внешних условиях».
В своей главной книге Бауэр теоретически предположил наличие структур, обеспечивающих термодинамическое неравновесие, и сформулировал принцип устойчивого неравновесия живых систем: «Для живых систем характерно именно то, что они за счет своей свободной энергии производят работу против ожидаемого равновесия» [6].
Смысл принципа устойчивого неравновесия заключается в биофизических аспектах направления движения энергии в живых системах. Этот принцип Бауэра кардинально различает работающую живую систему и работающую механическую систему, или машину.
Бауэр утверждал, что работа, производимая структурой живой клетки, выполняется только за счет неравновесия, а не за счет поступающей извне энергии, тогда как в машине работа выполняется напрямую от внешнего источника энергии. Организм употребляет поступающую извне энергию не на работу, а только на поддержание данных неравновесных структур.
Правда, Бауэр не установил, каким образом живые организмы постоянно поддерживают неравновесное термодинамическое состояние.
Ответ на этот вопрос дает закон устойчивости неравновесного термодинамического состояния, сформулированный Б. С. Доброборским: «Устойчивость неравновесного термодинамического состояния биологических систем обеспечивается непрерывным чередованием фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ[36]» [7].
При минимальном значении неравновесного термодинамического состояния клетки датчики включают режим расщепления АТФ, в результате чего энергетика организма начинает возрастать, достигая некоторого максимального значения.
При максимальном значении неравновесного термодинамического состояния клетки датчики включают режим синтеза АТФ, при котором энергетика организма начинает уменьшаться.
Наглядным примером здесь может служить последовательность сокращений и расслаблений сердечной мышцы: при сокращении сердечной мышцы у входящих в нее клеток происходят синхронные процессы расщепления АТФ, а при расслаблении – процессы синтеза АТФ. При последовательных циклах сокращения и расслабления сердечной мышцы в этих процессах одновременно и синхронно соответствующие биохимические реакции производят огромное количество клеток, каждая из которых в составе сердечной мышцы выполняет свою роль [8].
При этом частота сердечных сокращений определяется термодинамическим состоянием всего организма и может колебаться в зависимости от испытываемой организмом нагрузки в достаточно больших пределах.
Аналогично происходят соответствующие колебательные процессы в системе дыхания, в центральной нервной системе и в других системах.
Стоит отметить, что не все клетки, вовлеченные в тот или иной процесс, ведут себя как солдатики, четко выполняющие команду. Поскольку живые организмы являются открытыми термодинамическими системами, в которых непрерывно происходят разнообразные необратимые процессы, условия существования и жизнедеятельности каждой клетки непрерывно меняются. А соответственно меняются (перераспределяются) их роли в интегральных процессах, происходящих в органах и системах.