И при этом человек – часть общей картины Солнечной системы и подчиняется всем ее законам. И в первую очередь, закону смены дня и ночи и закону смены сезонов, которые напрямую связаны с вращением Земли вокруг своей оси и вокруг Солнца.
Живой мир и ритмы
Эта зависимость хорошо прослеживается на примере растений и животного мира, которые учитывают суточное и сезонное вращение Земли.
Еще в начале XVIII века французский ботаник Анри Луи Дюамель дю Монсо, проводя опыты с гелиотропом, обнаружил удивительную особенность: листья растения к восходу Солнцу поднимались вверх, а к закату опускались. Он установил растение в темной комнате, куда не пробивался солнечный свет, где постоянно были сумерки. И что же? Растение четко выполняло заложенную в нем программу. Как по часам листья вовремя поднимались и вовремя опускались вниз. Подобное явление Дюамель наблюдал и с фасолью. Вывод, который был сделан, таков: растения фиксируют суточное изменение.
Оставалось непонятным, каким образом растения определяли продолжительность светового дня, если смены дня и ночи в темной комнате для них не было.
Это же касается и сезонных изменений, ибо все мы знаем, как вовремя деревья сбрасывают свою листву с наступлением осени.
Хорошим примером учета сезонных изменений являются птицы. Например, зяблик (в переводе это слово означает «холостяк») прилетает к нам ранней весной, когда еще лежит снег. Прилетают только самцы, ибо самкам пока еще нечего делать, да и нечего есть. И этот маленький комочек никогда не ошибется и не прилетит осенью, ибо он «знает», когда весна обязательно придет.
Кстати, по птицам и растениям можно определять и время, правда, с некоторой неточностью. Знакомый нам зяблик начинает свою первую песню с 2-х часов ночи до 2 часов 30 минут, а малиновка – с 3 до 4 часов утра. Шиповник, например, раскрывает свои бутоны с 5 до 6 часов утра, а «укладывается спать» с 20 до 21 часа.
Наблюдение за миром растений и животных позволило сделать принципиально важный вывод: процессы, происходящие в мире растений и животных, – это периодические процессы. Следовательно, есть некие биологические часы, которые регулируются светом и практически не зависят от температуры. Именно по ним мир растений и животных регулирует свою жизнь. Но что они собой представляют и где находятся, оставалось неизвестным. Надо было найти «маятник» в биологических процессах (маятник олицетворяет ход времени в часах), который должен был быть высокочастотным. То есть надо было найти высокочастотный биохимический процесс, реагирующий на свет и не зависящий от температуры.
В XX веке начался интенсивный поиск часового механизма в человеке. И начался он с изучения колебательных химических процессов.
Химические колебания
Скорее всего, первые открытия химических колебаний носили случайный характер в работах ученых Древней Греции и Китая, а также алхимиков средневековой Европы.
Одна из первых публикаций по химическим колебаниям относится к 1828 году. В ней Т. Фехнер изложил результаты исследования колебаний электрохимической реакции. В 1833 году В. Гершель опубликовал подобное исследование колебаний каталитической гетерогенной реакции. Наиболее интересна публикация М. Розеншельда в 1834 году.
Ее автор совершенно случайно заметил, что небольшая колба, содержащая немного фосфора, в темноте испускает довольно интенсивный свет. В самом факте свечения фосфора не было ничего удивительного, но то, что это свечение регулярно повторялось каждую седьмую секунду, было интересно. В публикации Розеншельда приводилось детальное исследование мерцаний колбы.
Сорок лет спустя эти эксперименты с «мерцающей колбой» продолжил француз М. Жубер (1874 год). Ему удалось наблюдать в пробирке периодическое образование «светящихся облаков». Еще через 20 лет, и снова в Германии, А. Центнершвер исследовал влияние давления воздуха на периодические вспышки фосфора. В его экспериментах период вспышек начинался с 20 секунд и уменьшался с понижением давления. В то же время в Англии Т. Торп и А. Таттон наблюдали в запаянном стеклянном сосуде периодические вспышки реакции окисления триокиси фосфора.
Из теории колебаний известно, что для возникновения незатухающих колебаний, то есть автоколебаний, необходимы три условия: приток энергии или вещества, нелинейность протекающих в системе процессов и существование в ней обратных связей.
Всем этим условиям удовлетворяют химические открытые системы, которые обмениваются с окружающей средой энергией и материей, имеют обратные связи и нелинейности, хотя и скрытые на первый взгляд.
В 1928 году на Съезде русских физиков выступил с докладом молодой ученый, аспирант Московского университета А. А. Андронов. Доклад назывался «Предельные циклы Пуанкаре и теория колебаний».