Читаем Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания полностью

Кроме того, если электроны совершают скачки в атомах, почему они ведут себя как непрерывный поток в свободном пространстве — в полости электронно-лучевых трубок, например? Вдохновленный попытками унификации Вейля, Калуцы, а позже и Эддингтона, Эйнштейн в начале 1920-х годов начал размышлять о возможности объяснения поведения электронов путем расширения общей теории относительности, которое включило бы электромагнетизм наравне с гравитацией. «Скачки, — думал Эйнштейн, — должны быть математическими артефактами в остальном детерминистичной непрерывной теории». Под влиянием бесед с Эйнштейном Шрёдингер стал разрабатывать свою собственную идею непрерывного описания электронов, которая в конечном итоге привела к его новаторской теории волновой механики.

Однако не все в физическом сообществе считали отсутствие непрерывности недостатком. Пока зачатки волновой механики обретали форму, Вернер Гейзенберг, молодой физик из Мюнхена, предложил абстрактную математическую теорию, названную матричной механикой, в которой мгновенные прыжки из состояния в состояние были неотъемлемым атрибутом. Где еще могла быть предложена столь абстрактная теория, как не в утонченной среде Гёттингена? Гейзенберг был вдохновлен серией замечательных докладов Бора в этом городе.

<p>Дерзость первопроходцев</p>

В июне 1922 года Гильберт и несколько других членов профессорско-преподавательского состава университета Гёттингена, в том числе яркий молодой физик Макс Борн, пригласили Бора выступить с серией лекций о теории атома. Приняв это приглашение с энтузиазмом, Бор снял неофициальный бойкот немецких научных учреждений, который имел место после Первой мировой войны. За исключением Эйнштейна, чей образ был известен на международном уровне, научная репутация немцев сильно пострадала из-за войны. Ужасные последствия отравляющих газов — изобретения немецкого химика Фритца Габера, коллеги Эйнштейна, — и воздушных налетов оставили глубокие психологические травмы у выживших. Лекции Бора, названные «Боровским фестивалем» вслед за недавним «Геиделевским фестивалем», проходившим в том же городе, помогли возобновить научное сотрудничество между Германией и другими европейскими странами.

Прошло почти девять лет с тех пор, как Бор впервые предложил свою теорию. В последующие годы она была значительно укреплена стараниями Арнольда Зоммерфельда, работавшего в Мюнхене. В частности, Зоммерфельд дополнил нумерацию Бора уровней квантованной энергии двумя дополнительными квантовыми числами: полным моментом и проекцией момента на одну из координатных осей (обычно обозначаемой как ось z). Новые квантовые числа описывали различные орбиты электронов с одинаковой энергией. Ситуация, в которой два состояния системы с различными квантовыми числами обладают одинаковой энергией, называется вырождением.

В качестве бытовой аналогии вырождения рассмотрим разбросанные на столе карандаши. Поскольку все карандаши лежат на плоской поверхности стола, их потенциальная энергия одинакова, несмотря на то, что каждый карандаш повернут относительно стран света в свою сторону. Точно также электроны в вырожденных состояниях имеют равные энергии, но разные наклоны и формы своих орбит.

В 1916 году Зоммерфельд вместе с голландским физиком и химиком Питером Дебаем показал, что расширенная модель Бора, известная теперь как модель Бора — Зоммерфельда, может объяснить загадочный эффект Зеемана. Впервые описанный голландским физиком Питером Зееманом в 1897 году, эффект возникает при наблюдении спектральных линий атомов в магнитном поле. При наличии магнитного поля некоторые из спектральных линий расщепляются. Вместо одной линии на определенной частоте вблизи нее вдруг возникает три, пять или больше линий. Представьте, что при настройке радиоприемника на волну определенной радиостанции вы неожиданно обнаружили еще две передачи этой же радиостанции на соседних частотах.

Зоммерфельд показал, что эффект Зеемана является результатом взаимодействия внешнего магнитного поля и момента импульса электронов, вращающихся вокруг атомного ядра. В присутствии магнитного поля электроны с различными моментами импульса имеют различные энергии. Поскольку различие энергетических уровней приводит к различию частот света, испускаемого электронами при переходе из одного состоянии в другое, то оно обусловливает и наблюдаемое расщепление спектральных линий.

Перейти на страницу:

Все книги серии Pop Science

Двигатели жизни
Двигатели жизни

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей.Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы?Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.

Пол Фальковски

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?

Пол Хэлперн

Биографии и Мемуары / Научная литература / Физика / Прочая научная литература / Научпоп / Образование и наука
Остров знаний
Остров знаний

Человеку свойственна тяга к знаниям, но все, что доступно нашим наблюдениям, – это лишь крошечная часть окружающего мира. В книге «Остров знаний» физик Марсело Глейзер рассказывает, как мы искали ответы на самые фундаментальные вопросы о смысле нашего существования. При этом он приходит к провокационному выводу: у науки, нашего основного инструмента познания, есть непреодолимые ограничения.Излагая драматичную историю человеческого стремления все понять, книга «Остров знаний» предлагает исключительно оригинальную трактовку идей многих величайших мыслителей, от Платона до Эйнштейна, рассказывает, как их искания влияют на нас сегодня. Авторитетная и энциклопедическая история смысла и знаний, поведанная в этой книге, рассказывает, что такое «быть человеком» во Вселенной, полной тайн.

Марсело Глейзер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги