В январе 1926 года Шрёдингер закончил первую статью на эту тему. Она называлась «Квантование как задача о собственных значениях». Совершение такого значительного прорыва всего лишь за пару месяцев было практически беспрецедентным подвигом. Он отправил статью Зоммерфельду, который был потрясен его блестящим достижением. Зоммерфельд ответил, что статья стала для него «громом среди ясного неба»{62}.
Шрёдингер с огромным уважением относился к Планку и Эйнштейну и с нетерпением ждал их реакции. К счастью, отзывы были в основном положительными. Как вспоминала Энни, «Планк и Эйнштейн преисполнились энтузиазма с самого начала… Планк сказал: “Я смотрю на это, как ребенок, озадаченный головоломкой”»{63}.
Шрёдингер поблагодарил Эйнштейна в личном письме: «Ваше с Планком одобрение для меня ценнее, чем половина мира. Кроме того, это уравнение… возможно, никогда бы не появилось (по крайней мере, я бы его не открыл), если бы ваша работа не сделала для меня очевидной важность идей де Бройля»{64}.
К тому времени уже были опубликованы несколько работ Гейзенберга, Борна и Йордана с изложением теории матричной механики. Дирак предложил удобные математические обозначения для описания квантовых правил с использованием символов
Несмотря на то что теории Шрёдингера и Гейзенберга появились независимо друг от друга и что Шрёдингер, естественно, отдавал предпочтение своей, он осознавал, насколько важно продемонстрировать их эквивалентность. Зоммерфельд сразу понял, что теории совместимы — но совместимость необходимо было доказать математически. И вскоре Шрёдингер представил доказательство, которое Паули подкрепил еще более тщательными и скрупулезными выкладками. После установления эквивалентности обеих теорий Шрёдингер начал доказывать, что его подход был более материалистичен и обоснован с физической точки зрения. В конце концов, ведь в его описании электроны непрерывно перемещались в пространстве и во времени, а не прыгали из одного состояние в другое в абстрактном мире матриц.
В царстве призраков
После серьезных размышлений о следствиях обеих теорий Борн обнаружил в каждой из них слабые стороны, в том числе и в той, которую он сам помог разработать. Бор знал, что матричную механику критикуют за то, что она слишком абстрактна. Волновой подход выглядел более конкретным и наглядным. Он хорошо моделировал процессы, происходящие в реальном физическом пространстве, например столкновения частиц. Борну пришлось признать его изящество, ясность и значимость.
Однако волновая механика предлагала неадекватное описание движения свободного электрона в пустом пространстве. Такая картина не соответствовала экспериментальным данным, которые показывали, что иногда электроны ведут себя как точечные частицы. Картина пульсирующего в пространстве электрона выглядела привлекательно, но не было никаких опытных данных, подтверждающих, что заряд и энергия электрона на самом деле как-то распределялись в пространстве.
Чтобы примирить оба подхода, Борн предложил третий способ: представить волновую функцию как «призрак», который управляет поведением настоящего электрона. Волновая функция сама по себе не обладает никакими физическими характеристиками: ни энергией, ни импульсом. Она «живет» в абстрактном пространстве (которое теперь называется
Борн показал, как можно найти различные наблюдаемые величины с помощью волновой функции, используя ее призрачную, «закулисную» роль. Каждый раз, когда производятся измерения, вероятности различных исходов зависят от собственных состояний конкретного оператора (некоторых математических функций).