В таблице 7 приведены времена, которые необходимы для промывки капилляра определенным объемом (колонка 2) или объемом, в несколько раз превышающим объем капилляра (колонка 3). Времена, рассчитанные в этой таблице, дают также представление о зависимости времени ввода при вводе зон пробы одинаковой длины и, соответственно, одинаковых объемов в капиллярах с различным внутренним диаметром. Если, например, мы будем вводить в капилляр диаметром 50 мкм такой же объем пробы, как в капилляр диаметром 100 мкм, то время ввода будет в 16 раз больше. Если же будем вводить зоны пробы одинаковой длины, необходимо по крайней мере еще 4-х кратное время ввода.
6.3. Ввод пробы
Воспроизводимый ввод пробы представляет в КЭ наиболее сложную проблему. Для того, чтобы не вызвать уширения полос, зона пробы должна быть мала. Поэтому необходимо вводить очень маленький объем пробы — от 5 до 50 нл. Слишком большой объем пробы очень быстро приводит к искажению пика и ухудшению разделения. Чтобы отвечать этим высоким требованиям, а также для облегчения работы со столь малыми объемами, необходима миниатюризация и автоматизация ввода пробы.
Воспроизводимый ввод маленьких объемов пробы является важной предпосылкой для количественного анализа и стандартизации отклонений. Важнейшие способы ввода пробы, которые находят применение в различных автоматизированных коммерческих приборах, представлены в табл. 8.
Ввод пробы обеспечивается созданием разницы давлений между сосудом для пробы и концом капилляра, при этом давление либо повышается в сосуда для пробы, либо снижается на конце капилляра. Обе эти возможности допускают также простую промывку капилляра свежим буферным раствором. Количество вводимой пробы рассчитывается по соотношению:
Q
= Δp∙π∙r4∙ti∙c/8∙η∙Lи зависит только от разницы давлений и времени ввода пробы. При временах ввода порядка нескольких секунд разность давлений лежит в области нескольких миллибар. В коммерческих приборах это наиболее распространенный способ ввода проб.
Проблему при этом методе ввода пробы составляет сжимаемость газа. Схема на рис. 19 поясняет эту проблему. Во-первых, выбранное для ввода давление должно быстро достигаться, во-вторых, падение давления после ввода пробы не должно быть резким. Поэтому полезно использовать в работе интеграл давление-время.
Рис. 19.
а)
неконтролируемое повышение давления (например, в результате простого открывайся вентиля давления);Ь)
контролируемое повышение и понижение давления. Затемненная площадь — нормальный интеграл давление-время, заштрихованная площадь — коррекция посредством дополнительного импульса давления.Относительное стандартное отклонение, по нашим оценкам, лежит в интервале между 2 % и 3 %; применяя внутренний стандарт можно уменьшить эту величину до 1 % и ниже.
Для определения вводимого объема существуют две принципиальные возможности. Во-первых, это удается сделать с помощью расчета, во-вторых, его легко можно контролировать посредством измерения. Расчет вводимого объема базируется на законе Хагена-Пуазейля и сильно зависит от параметров, которые обычно известны. В качестве примера можно назвать вязкость, а также радиус капилляра. Колебание радиуса капилляра только на 1 % вызывает очень большую ошибку в расчетах, поскольку в законе Хагена-Пуаэейля радиус входит в четвертой степени.
Практическое определение осуществляется очень просто измерением проскока: время ввода выбирается так, чтобы зона пробы УФ-активного раствора доходила до детектора. Полученный ступенчатый сигнал анализируется таким образом, что отыскивается точка сигнала на половине высоты, и перпендикуляр на ось времени дает время проскока растворителя. Поскольку в данном случае можно работать с таким же растворителем, который вводится в систему, ошибка, связанная с вязкостью или радиусом капилляра, может быть незначительной. Расчет вводимого объема проводится теперь просто через время. Например, известно, что поток перемещается на 17.7 мм в минуту. При времени ввода 30 секунд (типично для анализа ионов в КЭ) и длине вводимой зоны пробы 8.9 мм это соответствует количеству почти 40 нл (при внутреннем диаметре 75 мкм).
При этом способе ввода сосуд с пробой, в который погружен капилляр, соединяется с источником напряжения, и под действием короткого импульса напряжения компоненты пробы перемещаются в разделительный капилляр. Количество введенной пробы при этом способе зависит от величины приложенного напряжения (