Неблагоприятную адсорбцию белков на поверхности капилляра можно уменьшить также добавками низших полиаминов, например, 1,3-ДАП. При этом получают высокую эффективность, однако из-за большой собственной электропроводности буфера следует использовать электрические поля низкой напряженности. Действие буферных добавок, вероятно, частично объясняется необратимой адсорбцией на стенках капилляра. Поэтому одновременно со снижением адсорбции пробы происходит резкое уменьшение электроосмоса. В качестве примера на рис. 60 показано разделение стандартных белков.
9.2. Использование капилляров с модифицированной поверхностью
ЭОП можно регулировать также с помощью химического модифицирования поверхности капилляра. Одновременно с этим могут уменьшаться возможная адсорбция компонентов пробы на поверхности капилляра и улучшаться воспроизводимость анализов. Для химического покрытия капилляров можно использовать различные способы. Химически модифицированные капилляры коммерчески доступны.
Рис. 60.
Условия: капилляр 75 мкм, 37/44 см, поле: 272 В/см; детектирование: 214 нм, фосфатный буфер со 100 мМ ДАП, pH 3.0; проба: цитохром С, лизоцим, рибонуклеаза А.
Принципиально различаются два метода нанесения слоев на поверхность. Сначала использовали метод традиционной химии силанов, при котором моно-, ди-, или трисиланы присоединяются к силанольным группам на стенках капилляров с образованием силоксановых связей. Функциональные группы, введенные сначала поверх силанов, можно использовать еще и на второй стадии для окончательного модифицирования поверхности.
Перечень описанных к настоящему времени в литературе т. н. общепринятых типов покрытий, приведен в таблице 23. Основным ограничением метода является недостаточная стабильность силоксановых связей по отношению к гидролизу в щелочных условиях. Этот метод достаточно хорошо известен в жидкостной хроматографии.
Недостаток этого метода можно обойти, применяя способы покрытия стенок капилляра полимерами, которые представляют собой вторую большую группу используемых покрытий. Здесь опять различают два способа:
— поверхность предварительно обрабатывается классическим способом химии силанов и при этом на нее наносятся т. н. якорные группы, на второй стадии они могут сополимеризоваться с соответствующими мономерами или олигомерами;
— на соответствующий носитель адсорбируется первичный полимер, который затем сополимеризуется in situ и поперечно связывается в сетку.
Поверхности с нанесенными слоями полимеров проявляют более высокую рН-стабильность в щелочах при pH около 9.
Недостаток покрытия полимерами заключается в сильной гидрофобности (адсорбция белков!), так что такого рода фазы часто используются в присутствии неионных или внутреннеионных детергентов. Сопоставление применяемых до настоящего времени полимерных покрытий приведено в таблице 24.
На основании многолетнего опыта изготовления кварцевых капилляров с покрытием для ГХ известно, что перед собственно химическим модифицированием очень полезно провести предварительную обработку материала. Капилляры, применяемые в КЭ, обычно изготавливаются либо из "некондиционных" трубок, применяемых в ГХ, либо из отходов производства световодов. Поэтому качество материалов различных трубок относительно их шероховатости и загрязнения адсорбированными ионами металлов очень различается.
Большинство описанных в литературе методов заключаются в обработке капилляров щелочами или кислотами для улучшения смачиваемости поверхности. Кроме этого, поверхность также химически истощается, и образуются новые силанольные группы. Это выгодно, поскольку дополнительно образуемые SiOH-группы играют роль центров связи с покрытием и тем самым помогают улучшению химического обмена со стенкой капилляра. Эта стадия заканчивается обычно нейтральной промывкой в дистиллированной воде и сушкой в потоке газа при повышенных температурах (80-200 °C).
Не все авторы указывают на необходимость предварительной обработки для успешного покрытия капилляров.