Рис. 3.
Рис. 4.
Изменение мембранного потенциала
На рис. 2 показана структура так называемого никотинового холинорецептора. Он локализован на постсинаптической мембране клетки и при связывании ацетилхолина изменяет свою конформацию таким образом, что через устье, сформированное субъединицами, внутрь клетки устремляются ионы Na+
. Происходит деполяризация, а затем и замена заряда мембраны на противоположный, что приводит к выходу К+ из клетки. Ток ионов К+ возвращает потенциал мембраны к исходной величине. В процессе этой перезарядки мембраны, называемой потенциалом действия, через этот же канал-холинорецептор внутрь клетки могут входить ионы Са2+. Следовательно, этот канал нельзя назвать избирательным в отношении катионов. В то же время это очень быстродействующая регуляторная система — потенциал действия, вызываемый ацетилхолином, возникает и гасится за 1–2 миллисекунды, благодаря чему синапс может проводить от аксона на иннервируемую клетку до 500 имп./с. Такое быстрое развитие и гашение сигнала возможны благодаря быстроте связывания ацетилхолина с рецептором, а также высоким скоростям его диссоциации от рецептора и разрушения ацетилхолинэстеразой. Разумеется, не менее важен и механизм открывания канала за счет конформационных переходов, происходящих за наносекунды. Продолжительное и быстрое функционирование холинергического синапса требует также большого запаса ацетилхолина, который синтезируется впрок и накапливается в везикулах пресинаптической мембраны. Кроме того, в клетках должны существовать высокие градиенты ионов Na+ и К+ по обе стороны плазматической мембраны, которые создаются и поддерживаются Ыа+/К+-насосом (см. статью А.А. Болдырева "Nа/К-АТФаза — свойства и биологическая роль": Соросовский Образовательный Журнал. 1998. № 4).