Модели временных рядов Бокса-Дженкинса
. Бокс и Дженкинс (Box and Jenkins) разработали процедуру для анализа и прогнозирования данных одномерных временных рядов при помощи авторегрессионной интегрированной модели скользящего среднего. Авторегрессионная интегрированная модель скользящего среднего (Autoregressive integrated moving average – ARIMA) моделирует значение во временном ряде как линейную комбинацию исторических значений и прошлых ошибок (шоков). Поскольку здесь используются исторические данные, эти модели являются работающими – до тех пор пока данные не демонстрируют детерминированное поведение (например, временную тенденцию или зависимость от внешних событий или переменных). Модель ARIMA обычно записывается следующим образом:ARIMA (p, d, q),
где p = степень авторегрессионной части;
d = степень дифференцирования; q = степень процесса скользящего среднего.
Тогда математическую модель можно записать следующим образом:
где wt = оригинальный ряд данных или разница степени d оригинальных данных;
φ1, φ2… φр = авторегрессионные параметры;
θО = постоянный член;
θ1, θ2… θq = параметры скользящего среднего;
εt = независимые возмущения или случайная ошибка.
Модели ARIMA можно откорректировать с учетом сезонности (seasonality) в данных. В этом случае модель (SARIMA) выглядит следующим образом:
SARIMA (p, d, q) × (p, d, q)s = n,
где s = сезонный параметр длины n.
Модели временных рядов в прибыли
. Большинство моделей временных рядов, используемых при прогнозировании прибыли, построено на основе квартальных данных о прибыли на акцию. В своей обзорной статье Батке и Лорек (Bathke and Lorek, 1984) указали, что три модели временных рядов принесли пользу в предсказании квартальной прибыли на акцию. Все три модели являются сезонными авторегрессионными интегрированными моделями скользящего среднего (SARIMA), поскольку квартальные прибыли на акцию имеют сильный сезонный компонент. Первая модель, разработанная Фостером (Foster, 1977), учитывает сезонность в прибыли, что дает:Данная модель была расширена Гриффином и Уоттсом с учетом параметра скользящего среднего:
Третья модель временных рядов, разработанная Брауном и Розеффом (Brown and Rozeff, 1979), аналогична в своем использовании параметра сезонного скользящего среднего:
Насколько хороши модели временных рядов в предсказании прибыли?
Модели временных рядов более эффективны в предсказании прибыли на акцию в следующем квартале, чем простые модели (использующие историческую прибыль). Ошибка предсказания (т. е. разница между фактической и предсказанной прибылью на акцию), связанная с моделями временных рядов, в среднем меньше ошибки, связанной с простыми моделями (например, простыми средними прошлого роста). Превосходство этих моделей над простыми оценками уменьшается с увеличением долгосрочности предсказаний, что говорит о непостоянстве оцениваемых параметров временных рядов.Не существует свидетельств тому, что одна из моделей временных рядов обладает преимуществом в смысле минимизации ошибки предсказания для каждой фирмы в выборке. Выигрыш от использования моделей, созданных специально для конкретной фирмы, по сравнению с моделями, которые применяются ко всем фирмам, относительно мал.
Ограничения, существующие при использовании в процессе оценки моделей временных рядов. При использовании моделей временных рядов в предсказании прибыли возникает несколько вопросов. Во-первых, модели временных рядов требуют многих данных, и именно поэтому большинство из них строится на основе квартальной прибыли на акцию. В большинстве оценок главное внимание уделяется предсказанию годовой прибыли на акцию, а не квартальной прибыли. Во-вторых, даже в случае квартальной прибыли на акцию число наблюдений в отношении большинства фирм ограничено данными за 15–20 лет (т. е. данными за 40–60 кварталов), что приводит к значительным ошибкам при оценке[85]
– в параметрах модели временных рядов и в предположениях о будущем. В-третьих, превосходство предсказанной прибыли на основе моделей временных рядов уменьшается при увеличении периода оценки. Если учесть, что предсказания прибыли в процессе оценки должны делаться для нескольких лет, а не кварталов, то модели временных рядов, по всей вероятности, имеют ограниченную стоимость. Наконец, исследования показали, что предсказания аналитиков превосходят даже лучшие модели временных рядов для оценки будущей прибыли.В заключение добавим, что применение моделей временных рядов, скорее всего, окажется наиболее успешным применительно к фирмам с длительной историей прибыли и там, где параметры моделей не сдвинуты существенно во времени. Однако по большей части издержки использования этих моделей, по всей вероятности, превысят их преимущества, по крайней мере в контексте оценки.
Использование исторического роста