Существуют два основных способа учесть возможность досрочного исполнения опциона. Во-первых, можно продолжать использовать нескорректированную модель Блэка-Шоулза и рассматривать получившееся значение стоимости в качестве основы или консервативной оценки истинной стоимости. Кроме того, можно попытаться скорректировать стоимость опциона с поправкой на возможность досрочного исполнения. К решению этой проблемы есть два подхода. Первый – это использовать модель Блэка-Шоулза для оценки опциона на каждую потенциальную дату исполнения. Для случая фондовых опционов потребуется провести оценку для каждой «экс-дивидендной» даты и выбрать наибольшее из полученных значений стоимости опциона. Второй подход основывается на использовании модифицированной версии биномиальной модели, позволяющей рассмотреть возможность досрочного исполнения. В этой версии движения цены актива вверх и вниз в каждом периоде можно оценить, отталкиваясь от их продолжительности[32]
.Влияние исполнения на стоимость базового актива
. Модель Блэка-Шоулза основывается на предположении о том, что исполнение опциона не влияет на стоимость базового актива. Это может быть истиной для биржевых фондовых опционов, но для некоторых видов опционов это отнюдь не так. Например, исполнение варрантов повышает число акций компании, находящихся в обращении, и вливает свежую кровь в фирму. При этом оба этих фактора оказывают воздействие на цену акций[33]. Ожидаемое отрицательное влияние (вследствие «разбавления») исполнения опциона понизит стоимость других варрантов, которые аналогичны опционам на покупку. Поправка на разбавление, оказывающее влияние на цену акции, в модели Блэка-Шоулза достаточно проста. Цена акции корректируется с поправкой на ожидаемое разбавление, являющееся следствием исполнения опциона. В случае варрантов, например:Поправка на разбавление S = (S ns + W nw)/(n + nw),
где S = текущая стоимость акции;
nw = число варрантов в обращении;
W = стоимость варрантов в обращении; ns = количество акций в обращении.
При исполнении варрантов число акций в обращении повысится, что приведет к сокращению цены акций. Числитель отражает рыночную стоимость собственного капитала, включая и акции, и варранты в обращении. Сокращение S уменьшит стоимость опциона колл.
В этом анализе есть что-то вроде замкнутого круга, поскольку для оценки поправки на разбавление S требуется знать стоимость варранта, а для его оценки необходимо иметь поправку на разбавление S. Данную проблему можно разрешить, начиная процесс расчета с предположения по поводу стоимости варранта (например, цены исполнения или текущей рыночной стоимости варранта). Это даст необходимую нам величину доходности варранта, и полученную величину можно использовать в качестве входного параметра для переоценки его стоимости, откуда можно начинать требуемый процесс расчета.
ОТ МОДЕЛИ БЛЭКА-ШОУЛЗА К БИНОМИАЛЬНОЙ МОДЕЛИ