Процесс преобразования применяемой в модели Блэка-Шоулза непрерывной дисперсии в биномиальное дерево довольно прост. Предположим, что у нас есть актив, продающийся в данный момент по цене 30 долл., а оценка стандартного отклонения стоимости актива, приведенного к годовому масштабу, дала значение в 40 %. Безрисковая ставка в годовом выражении – 5 %. Для упрощения предположим, что срок жизни опциона, подлежащего оценке, равен 4 годам, а период равен 1 году. Для оценки цен к окончанию каждого года мы сначала оценим движения вверх и вниз по биномиальной схеме:
На основе этих оценок мы можем получить цены для оконечности первого узла дерева (завершение первого года):
Повышающаяся цена = 30 долл. (1,4477) = 43,43 долл.
Понижающаяся цена = 40 долл. (0,6505) = 19,52 долл.
Продвигаясь через оставшуюся часть дерева, мы получим следующие цифры:
Модель Блэка-Шоулза для оценки опционов пут
. Стоимость пут-опциона можно вывести из колл-опциона с той же самой ценой исполнения и тем же самым сроком действия:С – Р = S – K × e-rt,
где С = стоимость опциона колл;
Р = стоимость опциона пут.
Связь между стоимостью опционов колл и пут называется «пут – колл паритетом», и любое отклонение от него инвесторы могут использовать для получения прибыли без всякого для себя риска. Чтобы объяснить, почему возникает пут – колл паритет, рассмотрим продажу колл-опциона и покупку пут-опциона с ценой исполнения К и сроком истечения t; при этом одновременно покупается базовый актив по текущей цене S. Выплаты по этой позиции – безрисковые и всегда приносят К в момент истечения срока t. Чтобы убедиться в этом, предположим, что цена исполнения к моменту срока истечения опциона равна S*. Выплаты на каждую позицию в портфеле представлены ниже:
Эта позиция со всей определенностью приносит сумму К, а издержки на создание этой позиции должны равняться текущей стоимости К при безрисковой ставке Ke-rt.
S + Р – C = Ke-rt,
С – Р = S – Ke-rt.
Подставив стоимость опциона колл, полученного по модели Блэка-Шоулза, мы получим:
Таким образом, создается портфель-имитатор путем продажи без покрытия [1 -N(d1)] акций и инвестирования Ke-rt[1 -N(d2)] в безрисковый актив.
Модель оценки опционов при скачкообразном процессе
Если изменения цены остаются большими, когда временные периоды в биномиальной модели сокращаются, то уже нельзя предполагать, что цены меняются непрерывно. Когда изменения цен остаются значительными, процесс ценообразования, допускающий возможность скачков, представляется более реалистичным. Кокс и Росс (Cox and Ross, 1976) оценивали опционы в условиях скачкообразного процесса ценообразования, где скачки могут быть только положительными. То есть в очередном интервале цена акции либо совершит скачок в сторону повышения с определенной вероятностью, либо поползет вниз с определенной скоростью.
Мертон (Merton, 1976) рассмотрел распределение, где ценовые скачки накладываются на непрерывный ценовой процесс. Он определил скорость, с которой совершаются скачки (λ), и средний размер скачка (k), выраженный в процентах от цены акции. Модель оценки, основывающейся на данном процессе, называется моделью диффузионных скачков (jump diffusion model). В ней стоимость опциона определяется пятью переменными, установленными в модели Блэка-Шоулза, а также параметрами скачкообразного процесса (λ, k). К сожалению, оценки параметров скачкообразного процесса связаны со столь большими помехами для большинства фирм, что любые преимущества использования более реалистичной модели перестают в реальности что-либо значить. Это обуславливает ограниченность использования этих моделей на практике.
ДОПОЛНИТЕЛЬНО ОБ ОЦЕНКЕ ОПЦИОНОВ
Все модели оценки опционов, описанные до сих пор – биномиальная модель, модель Блэка-Шоулза, модель скачкообразного процесса (jump process model), – предназначены для оценки опционов с ясно определенными сроками исполнения и степенью зрелости базовых активов, обращающихся на рынке. Однако опционы, с которыми мы сталкиваемся в инвестиционном анализе или при оценке, часто основываются на реальных, а не на финансовых активах. Реальные активы могут принимать куда более усложненные формы. В данном разделе рассмотрены некоторые из этих вариаций.
Опционы колл с верхним пределом и барьерные опционы