Читаем Инженерная эвристика полностью

Уменьшение количества толкований слова или предложения или фразы задаётся, как вы сказали, контекстом. Контекст[103] — штука плохо формализуемая, в противном случае задача машинного перевода была бы решена.

Например, фраза, которая долго висела на рекламных баннерах: «Время есть». Что это? «Время идти принимать пищу» или «ещё осталось немного времени»? Я задал контекст, уточняя в вопросе эту фразу. Но как я это сделал? Если изменить фразу: «Время поесть», то ясно, что пора покушать. Казалось бы, неоднозначность исчезла! Как бы не так! Кому пора, где пора, почему пора и т. д. поесть? Ответа нет. Нет и однозначности. Теперь к аксиоме. Через одну точку можно провести бесконечное множество прямых. Где эта точка? Что за прямые? Кто может осуществить эту возможность и провести бесконечное множество прямых? Да и про какую геометрию вы вообще говорите? У одного Гильберта аксиом геометрии, если мне не изменяет память, двенадцать! Значит, эта аксиома допустима в очень большом числе возможных геометрий!

А. Трушечкин. Когда мы формулируем аксиомы, мы не интересуемся этими вопросами. Вот есть точка, а есть прямая, между ними существует определённое отношение, при обращении с этими тремя объектами надо соблюдать определённые правила. Сами правила сформулированы чётко. В этом смысле аксиомы чёткие и однозначные.

А откуда они взялись, что они означают, кто их может осуществить, где это всё находится и т. д. и т. п. — от этих вопросов мы абстрагируемся. От вопроса, какие ещё могут быть аксиомы, мы пока тоже абстрагировались. Сформулировали правила, с ними и работаем, а что можно было ещё массу разных правил придумать — это понятно. Но мы работаем с данными правилами.

Ещё пара замечаний. Можно провести аналогию между аксиоматическими системами и правилами, например, шахмат или шашек. Правила сформулированы на естественном языке, но тем не менее, правила однозначны.

Спрашивать: «Где эта точка? Что за прямые? Кто может осуществить эту возможность и провести бесконечное множество прямых?» — это всё равно, что в шахматах спрашивать: «Как мы прокормим коня?» А ещё лучше — целого слона! Мы не имеем права задавать вопросы, выходящие за пределы тех объектов и отношений между ними, которые зафиксированы в правилах.

В доказательство того, что шахматные правила сформулированы однозначно — я ни разу не слышал, чтоб на шахматных соревнованиях возникали вопросы, как можно ходить, а как нельзя! Да, обсуждаема неоднозначность, связанная с необходимостью записывать партию. Но это неоднозначность не шахматных правил, а правил проведения шахматных турниров, эти правила относятся уже к людям, а не к фигурам. По самим же шахматным правилам, то есть по вопросам, какие ходы на доске делать можно, а какие нет, как определяется победитель, исходя из позиции на доске, двузначностей никогда не возникало.

Так же и в математике: никогда не слышал, чтобы кто-то интерпретировал ту или иную аксиому двояко! Математики выясняют, является ли та или иная аксиоматика полной, непротиворечивой, независимой, разрешимой, но никогда не слышал, чтобы они обсуждали, как надо понимать какую-то отдельную аксиому! Так что аксиомы сформулированы однозначно.

А то, что существует множество геометрий — это аналог тому, что существует множество вариантов игры в шашки (включая «чапаевцев», когда шашки сбиваются с поля щелчком). Шашки и доска одни и те же (если не считать стоклеточных шашек), а правила могут быть разные. Но если мы зафиксировали правила, по которым мы играем, то всё однозначно.

С. Ёлкин. Это глубоко неверное представление! Именно глубоко! Такого рода заблуждения превращаются в препятствия на пути развития и техники и науки.

Сначала о шахматах. Как бы вы ни формулировали правила, если вы их дадите человеку который никогда в шахматы не играл, как это мы наблюдаем у детей, впервые севшими за доску, он будет натыкаться на всякие не описанные случаи. И тогда мы ему говорим: «Так не ходят». То же происходит, когда вводят новые правила, как в случае с блицтурнирами.

Итак. Что же определяет однозначность? Отвечаю.

Во-первых, наличие вполне конкретного в каждом конкретном случае объекта: шахматной доски и фигур (среди них нет живого слона, поэтому вопрос о его кормлении не обсуждается).

Во-вторых, конечно, наличие правил игры.

В-третьих, это практика игры, то есть практика применения правил очень многими игроками и судьями.

Всё вместе и есть тот самый контекст. Только бесконечный (или практически очень большой) контекст даёт нам однозначность, он позволяет отбросить варианты, все, кроме одного — правильного. Только всё вместе даёт однозначность поведения в игре и однозначность правоприменения.

Теперь о математике. Всё то же самое. Одна аксиома не обладает однозначностью. Что бы она стала однозначной, необходимы:

1. Все остальные аксиомы данной системы (именно поэтому у Евклида их пять, а у Гильберта двенадцать);

2. Общее понимание (трактовка, образы) исходных понятий;

3. Практика работы с образами, понятиями, аксиомами.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука