Читаем Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков полностью

Незнакомец сказал, что нет ничего проще: он охотно проводит их, если только они не заставят его являться в гости прежде назначенного срока и согласятся побродить с ним немного, чтобы скоротать оставшееся время.

Фило, разумеется, рассыпался в благодарностях, обильно уснащенных цветистыми оборотами и взываниями к Аллаху. Старательность его, видимо, позабавила незнакомца.

— Судя по всему, вы люди дальние, — заключил он с легкой усмешкой, — светлоглазы да и одеты странно. А уж изъясняетесь… Ни дать ни взять иноземцы, начитавшиеся восточных сказок.

«Вот тебе и Хоттабыч!» — подумал Мате не без злорадства.

— Ты прав, — сказал он, искоса разглядывая нового спутника, который неторопливо шествовал между ним и Фило. — Мы действительно издалека. Дальше, как говорится, некуда!

— Уж не с того ли света? — пошутил незнакомец.

— Ну нет, — так же шутливо успокоил его Мате, украдкой переглянувшись с товарищем. — Тот свет — это прошлое, а мы, скорее, из будущего…

— Выходит, вы еще не родились. Везет мне сегодня на балагуров… О, нерожденные, когда б вы знали, как худо нам, сюда бы вы не шли!

«Опять стихи!» — подумал Мате, привычно морщась. Зато Фило так и просиял: он узнал стихотворные строки Хайяма.

— Будь здесь в тысячу раз хуже, — горячо воскликнул он, — мы пришли бы сюда все равно, потому что не можем отказать себе в удовольствии познакомиться с двумя великими Хайямами!

Услыхав это, незнакомец перестал улыбаться и даже приостановился. Так они и в самом деле разыскивают двух Хайямов?

— Конечно, — подтвердил Мате. — Но что тебя так удивляет?

— Право, ничего, — сказал тот, вновь обретая свою насмешливую невозмутимость. — Просто приятно знать, что людям будущего известны и стихи Хайяма-поэта и труды Хайяма-математика.

— К сожалению, не все, — затараторил Мате, обрадовавшись возможности поговорить о любимом предмете. — Но самую ценную математическую работу Хайяма у нас знают.

— Это какую же? — оживился незнакомец. — «Трактат о доказательствах задач алгебры и алмукабалы[12]»?

— Да, да, — подтвердил Мате. — В этой работе Хайям впервые в истории математики решает уравнения третьей степени.

— Боюсь, ты преувеличиваешь заслуги Хайяма, — сказал незнакомец. — Кубическими уравнениями занимались уже несколько тысяч лет назад в Древнем Вавилоне. Некоторые виды кубических уравнений исследовали также древние греки…

— Вот именно: некоторые! — запальчиво перебил Мате. — А Хайям исследовал все четырнадцать видов. Зачем же ты умаляешь заслуги своего соотечественника? Слушай, — глаза Мате неприязненно сузились, — уж не завистник ли ты?

— Кто-кто, а я Хайяму не завистник, их у него и так хоть отбавляй! — продекламировал незнакомец с грустной насмешкой. — Но, как сказал Платон, Сократ[13] мне дорог, а истина дороже. Отдавая должное Хайяму, не следует забывать о тех, чья мудрость была ему и кормилицей, и поводырем.

— Тогда надо бы, верно, вспомнить не только одревних греках, — заметил Мате.

Незнакомец шутливо воздел смуглые ладони: поистине у него вырывают слова изо рта! Хайяму в самом деле было у кого поучиться и здесь, на Востоке.

Когда-то, после завоеваний Александра Македонского, во времена владычества греков, оплотом науки стал египетский город Александрия. Позже, во времена господства арабов, новой Александрией стал Багдад.[14] Три столетия назад в Багдаде при дворе халифа Мамуна собрались самые светлые умы мусульманского мира. Там встретились уроженцы Средней Азии, Хорасана, персы, сирийцы, потомки вавилонских жрецов — сабии…

Это было началом золотого века восточной науки. На ее небосклоне одно за другим засверкали десятки великих имен. Но первым из них следует назвать имя Мухаммеда ибн Мусы ал-Хорезми. Ибо это он впервые познакомил арабский Восток с индийскими цифрами и с принятой в Индии десятичной системой счисления…

— Может быть, тебе будет интересно узнать, — прервал незнакомца Мате, — что система эта от вас, то есть с Востока, перешла и к нам, на Запад, где ее стали называть алгоритмом. В дальнейшем алгоритмом стали называть также такой способ решения однотипных задач, который подчинен единому, раз и навсегда установленному правилу. И в названии этом, если вслушаться, нетрудно угадать слегка измененное имя «ал-Хорезми».

— Что ж, — сказал незнакомец, — он вполне заслужил такую честь. И не только потому, что ввел в наш обиход индийский счет. Благодаря ал-Хорезми возникло и еще одно слово: алгебра, от арабского «альджебр», что значит восстановление. Потому что именно ал-Хорезми был тем колоссом, который положил начало алгебре как науке. В его «Книге по расчету алгебры и алмукабалы», написанной за два столетия до рождения Хайяма, сошлись и объединились в стройное учение разрозненные сведения по алгебре, накопленные со времен Древнего Вавилона.

— Твоей образованности может позавидовать сам Хайям, — сказал Мате, — но разве ал-Хорезми решал кубические уравнения?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика