Читаем Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков полностью

— Нет, — отвечал незнакомец. — Он нашел общее правило составления и решения уравнений первой и второй степени. Что же до кубических уравнений, то ими у нас занялись лишь сто лет спустя, после того как были переведены на арабский язык исследования Архимеда о шаре и цилиндре и сочинение Аполлония.

Услыхав про Аполлония, Фило, которому давно надоело молчать, взыграл, как цирковая лошадь при звуках знакомой музыки. Насколько ему известно, сказал он тоном знатока, Аполлоний написал трактат о конических сечениях. Но при чем здесь кубические уравнения? Ведь уравнения — это же алгебра, а конические сечения — геометрия!

Мате просто из себя вышел: неужели этот взрослый младенец до сих пор не знает, что алгебраические задачи можно решать и геометрическим способом?

— Конечно, — поддержал его незнакомец. — В некоторых случаях такой способ куда короче и удобнее. Древние греки, например, щедро им пользовались. Обратился к коническим сечениям и Хайям, когда столкнулся с кубическими уравнениями.

— Ты так хорошо знаешь математику… Наверное, Хайям-ученый тебе все-таки ближе, чем Хайям-поэт, — с надеждой предположил Мате.

Но незнакомец сказал, что оба дороги ему совершенно одинаково. Тем более что и между собой они ладят отлично. Ведь они друзья и даже однолетки! Когда Хайям-поэт пишет стихи, Хайям-математик нередко чертит свои математические доказательства на полях его рукописи. А однажды стихотворные строки одного обнаружились в геометрическом трактате другого.

— Ты читал геометрический трактат Хайяма? — взволнованно перебил его Мате. — Тот самый трактат, где исследуется пятый постулат Эвклидa?[15]

Незнакомец снисходительно улыбнулся: мог ли не читать его он, постоянный переписчик Хайяма? Это сочинение называется «Комментарии к трудностям во введениях книги Эвклида». Оно состоит из трех частей. В первой речь идет о пятом постулате Эвклида. В двух последующих Хайям излагает учение о числе и числовых отношениях.

Фило ревниво заметал, что есть здесь кое-кто, не только не читавший геометрического трактата Хайяма но и ничего не знающий о пятом постулате Эвклида.

— Кажется, нас с тобой справедливо упрекнули в невежливости, — обратился незнакомец к Мате. — Но говорить о пятом постулате Эвклида на ходу… Пожалуй, это не слишком удобно.

— Так не сделать ли нам небольшой привал? — быстро нашелся Фило, всегда готовый отдохнуть и подкрепиться.

— Отчего бы и нет, — согласился незнакомец, взглянув на солнце, — времени у нас еще довольно.

КАМЕНЬ ПРЕТКНОВЕНИЯ

Они шли в это время зеленым, окаймленным садами и виноградниками пригородом. Незнакомец сказал, что неподалеку есть подходящее место для отдыха, и вскоре все они очутились в тенистой роще на берегу небольшого ручья.

Фило сейчас же распотрошил свой рюкзак, куда успел-таки тайком от Мате засунуть с дюжину купленных на базаре лепешек. Они оказались как нельзя кстати, особенно незнакомцу, который, кажется, сильно проголодался и устал.

Поев и утолив жажду необычайно вкусной водой из ручья, компания растянулась на траве и примолкла. Мате краешком глаза подметил, как бережно подложил незнакомец полу халата под свою обвязанную платком ношу. Но Фило было не до наблюдений. Щурясь на солнечные просветы в листве, слушая бормотание воды, он и сам бормотал какие-то стихи и, казалось, забыл обо всем на свете:

Немного хлеба, свежая водаИ тень… Скажи, но для чего тогдаБлистательные гордые султаны,Зачем рабы и нищие тогда?

Как ни тихо он говорил, незнакомец все же расслышал сказанное. Мате видел, как насторожились его глаза, до тех пор задумчивые и рассеянные. А Фило все читал…

Траву, что так душиста и нежна,
Которой гладь ручья окаймлена.С презреньем не топчи, — а вдруг из прахаБожественной красы взошла она?

— Я вижу, стихи Хайяма милей твоему сердцу, чем пятый постулат Эвклида, — сказал незнакомец неожиданно резко, но от Мате и на сей раз не укрылось, что он растроган и досадует на себя за это.

Верный рыцарь приличий, Фило воспринял его замечание как намек и мужественно приготовился выслушать лекцию, на которую сам же напросился. Он, правда, попытался облегчить свою участь, попросив не посвящать его в сложные доказательства. Пусть ему объяснят самую суть — с него и этого довольно!

— Поистине мир полон противоречий, — развел руками незнакомец. — Ты заранее собираешься принять на веру все, что тебе скажут, тогда как суть как раз в том и состоит, что пятый постулат на веру принимать не желают… Впрочем, дело это и впрямь до того непростое, что мне ничего не остается, как выполнить твою просьбу.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика