Фило растерян. Что ж это такое? Выходит, каждая комбинаторная задача — всегда одновременно и вероятностная?
Мате слегка морщится.
— Ммм… Не каждая. И не всегда. Но часто! Отсюда легко понять, какая тесная смычка существует между теорией вероятностей и комбинаторным анализом.
Фило задумчиво теребит бахрому скатерти. Все это очень хорошо, и связь теории вероятностей с комбинаторикой, а стало быть, с жизнью для него теперь очевидна. Но из этого не следует, что теория вероятностей так уж практически необходима. Вычислить вероятность удачи не значит еще удачи добиться. В конце концов, кто раздобыл рецепт королевского паштета? Кто отворил дверь подземелья? Асмодей или теория вероятностей?
— И что же из этого вытекает? — иронизирует бес. — Только то, что из пушки по воробьям не палят и что удовлетворение личных потребностей мсье Фило в задачи теории вероятностей не входит.
— Уж конечно, — поддерживает Мате. — У нее совсем иные цели. Ведь если комбинаторика — инструмент, которым пользуется теория вероятностей, то сама теория вероятностей — инструмент, с чьей помощью познают мир и его законы самые разнообразные науки. Биология — наука о живых организмах, состоящих из громадного количества клеток. Статистическая физика — она исследует неживую природу, но объекты ее изучения опять-таки состоят из мириадов мельчайших частиц. Астрономия, изучающая бесчисленное множество небесных тел. Наконец, статистика — одна из тех наук, что изучает жизнь общества, иначе — огромного множества людей, и потому занимает такое важное место в государственном планировании, экономике, организации производства… Словом, если неэвклидова геометрия приложима лишь к беспредельным пространствам Вселенной, а теория относительности — к фантастическим скоростям, близким к скорости света, то теория вероятностей применяется во всех без исключения областях, где мы сталкиваемся с так называемыми большими, а на самом деле грандиозными числами. С теми, о которых беседовали на улице Сен-Мишель Ферма и Паскаль и чей закон в конце семнадцатого столетия открыл швейцарский математик Якоб Бернулли.
— Скажи́те! — удивляется Фило. — А ведь с чего все началось? Всего-то с игры в кости.
— Ничего странного, мсье, — подает голос черт. — Не спорю: азартные игры — это, конечно, бяка. А все же им удалось сыграть и положительную роль в истории человечества. Мсье Паскаль даже полагал, что в этой случайности есть своя закономерность. По его мнению, человеческая изобретательность ярче всего проявляется именно в играх… И все-таки вы, надеюсь, не думаете, что теория вероятностей в наши дни осталась той же что в семнадцатом веке?
Фило обидчиво фыркает. Не такой уж он олух! После всего сказанного…
— Вот именно. — Мате примирительно дотрагивается до руки, теребящей скатерть. — После всего сказанного совершенно ясно, что со временем в теории вероятностей произошли значительные перемены. И если поначалу задачи ее ограничивались вычислением вероятностей отдельных событий, то уже в восемнадцатом и девятнадцатом веках, с ростом промышленности и экспериментальной науки, сама жизнь поставила теорию вероятностей на службу новым, более сложным проблемам. Различные формы страхования, ошибки, связанные с научными наблюдениями и опытами, — все это заставило ее обратиться к исследованию так называемых случайных величин. Элементы этого понятия встречаются уже в трактате Гюйгенса «Об азартных играх». Потом им занимались многие европейские ученые: Даниил Берну́лли, Пуассо́н, Муа́вр, Лапла́с, Лежа́ндр, Га́усс. И все же наиболее четкую формулировку понятие случайной величины обрело в трудах советского академика Колмогорова.
— Знай наших! — подмигивает Фило. — Приятно услышать имя соотечественника в списке тех, кто совершенствует науку…
— Могу вас обрадовать, — говорит Мате. — В истории науки о вероятностях таких имен много. В первую очередь это Пафнутий Львович Чебышёв — крупнейший русский математик XIX века. Именно он вывел русскую теорию вероятностей на главное место в мире, окончательно преобразовав ее в строго математическую дисциплину. Дело Чебышёва достойно продолжили его ученики Ляпунов и Марков. Далее эстафету подхватили талантливые советские ученые: Слуцкий, Бернштейн, Хинчин, упомянутый уже Колмогоров, а также их ученики, разработавшие вновь возникшие разделы теории вероятностей. Такие, как функции распределения. Или же вероятность случайных процессов, тесно связанных с биологией, астрономией, физикой, инженерным делом… Впрочем, не сомневаюсь, что теория вероятностей будет постоянно пополняться новыми понятиями. Ведь она неотделима от жизни, а жизнь никогда не кончается.
— Совершенно с вами согласен, мсье! — многозначительно намекает бес. — А посему не пора ли нам закрыть официальную часть и перейти к художественной?
— Что вы имеете в виду? — опасливо интересуется Фило.
— Ничего особенного, мсье. Разве что решение одной-двух задач по комбинаторике. Но для этого я, с вашего разрешения, должен отлучиться. О, ненадолго! Всего лишь чтобы слетать в Версаль семнадцатого века.