— Да, — сказал Мате. — Глава шестая так и называется: «Обсерватория в Исфахане».
Фило посмотрел на него пристально: заодно не вспомнит ли Мате название главы первой? Тот смущенно потер лоб.
— Хотите, напомню? — предложил Фило с коварной улыбкой. — Она называется «Поэт и ученый».
— Не может быть! — закричал Мате, выхватывая книгу. — Как же я не заметил…
Он выглядел таким пристыженным и несчастным, что у добросердечного филолога под ложечкой засосало.
— Ничего не поделаешь, дорогой. От предубеждения до заблуждения — один шаг.
— Да, — покаянно закивал Мате, — всегда запоминал только то, что хотел. Предубеждения делают нас слепыми.
— Это я и по себе знаю, — признался Фило. — С детства вбил себе в голову, что не способен к точным наукам. А между тем умудрялся ведь как-то сдавать экзамены. Выходит, не так уж я туп. Попросту нашел удобную формулировку, позволяющую мне лоботрясничать: раз неспособный, так и стараться не стоит — все равно ничего не пойму.
Раздался пронзительный свист. Приятели вздрогнули.
— Похоже, нас с вами освистывают, — невесело пошутил Мате. — Кто бы это?
— Чайник, — пояснил Фило. — Между прочим, тоже член нашей семьи, и весьма уважаемый.
Решето Эратосфена
Фило пошел на кухню, позвякал там посудой и вернулся с подносом, на котором красовались два чайника, эмалированный и фарфоровый, покрытый белоснежной салфеткой.
— Люблю чай, — сказал он, ставя поднос на веселую красную табуретку. — А вы? По лицу вижу, что равнодушны. Значит, не пробовали чая моей заварки.
Они сели за тщательно накрытый стол. Пенелопа и Клеопатра сразу позабыли о своей провинности и, умильно мурлыкая, терлись о ноги хозяина. Тот поставил перед ними тарелку с мелко нарезанной колбасой, и кошки принялись за еду, деликатно подхватывая розовые кусочки свежими, как лепестки, язычками.
Осторожно наклоняя чайник, Фило наполнил стаканы дымящейся, золотисто-коричневой жидкостью.
— Вот как надо разливать чай! Ни одной чаинки в стакане. И заметьте: без этого вашего пресловутого ситечка.
— Что еще за ситечко?
— Уж конечно, не то, что стащил Остап Бендер у вдовы Грицацуевой. Я имею в виду решето Эратосфена, которым вы клянетесь по всякому поводу. Кстати, давно хотел спросить, кто такой Эратосфен?
— С вашего разрешения, древнегреческий математик. Жил примерно в третьем веке до нашей эры.
— Полно меня разыгрывать, — подмигнул Фило, — был бы Эратосфен математиком, не ходил бы он с ситом.
— Не с ситом, а с решетом.
— Какая разница! И то и другое — прибор для просеивания. А что может просеивать математик? Не числа же, в самом деле!
— Отчего же! — возразил Мате, с наслаждением прихлебывая ароматный напиток. — Человек, просеивающий числа, никогда без работы не останется. Ведь чисел бесконечное множество.
— Допустим. Но какой смысл их просеивать?
— Надеюсь, вы все-таки не думаете, что Эратосфен просеивал числа сквозь обычное решето. Решетом Эратосфена называется придуманный им способ отыскивать среди натуральных чисел простые, то есть такие, которые делятся только на самих себя и на единицу.
Мате полез в карман, и на сцену снова выплыл хорошо нам знакомый блокнот.
— Вот вам натуральный ряд чисел: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30…
— А единица где?
— Единица не в счет. Итак, зачеркнем в этом ряду каждое второе число после 2 — иначе говоря, все четные числа, которые, естественно, простыми быть не могут, так как делятся на два. Что выпало?
— Четыре, шесть, восемь, десять, двенадцать…
— И так далее, — прервал Мате. — Теперь вычеркнем каждое третье число после тройки.
— Ой! — сказал Фило. — Шестерка уже вычеркнута.
— Не беда, вычеркнем еще раз. Итак, вычеркиваем: 6, 9, 12, 15, 18, 21, 24, 27, 30… Теперь посмотрим, какое невычеркнутое число стоит после тройки.
— Пять.
— Превосходно. Зачеркнем каждое пятое число после пяти. Это 10, 15, 20, 25, 30. Далее возьмем следующее после пятерки невычеркнутое число семь…
— Знаю, знаю! — догадался Фило. — Зачеркнем каждое седьмое число после семерки. Это 14, 21, 28. Потом зачеркнем каждое одиннадцатое число после 11, каждое тринадцатое после 13, каждое семнадцатое после 17, девятнадцатое после 19, двадцать третье после 23…
— Уймитесь, — остановил его Мате. — Наш ряд уже кончился.
— Ну и что же! — горячился Фило. — Да будет вам известно, что числам нет конца.
— Благодарю за новость. Давно ли вы узнали это от меня, и вот уже я узнаю́ это от вас. Ну да ладно! Назовите-ка числа, оставшиеся незачеркнутыми.
— Два, три, пять, семь, одиннадцать, тринадцать, семнадцать, девятнадцать, двадцать три, двадцать девять, — перечислил Фило.
— Вот вам и первые простые числа.
— А последние какие?
— Никакие, разумеется. По той причине, что простым числам, так же как натуральным, конца нет.
— И вы беретесь это доказать?
— Зачем же доказывать то, что давным-давно доказал Эвклид? Другое дело, если вы спросите, какое наибольшее простое число известно на сегодняшний день…
— В самом деле, какое?