Другим важным классом формальных логик являются так называемые модальные логики. Это довольно обширный класс, и даже простейшая аристотелева логика может быть представлена в виде модальной. Но формализм модальных логик хорош тем, что при помощи него можно обобщать различные понятия и отношения объективной реальности. В частности, такая частная логика, как темпоральная, позволяет формально рассуждать о вопросах, связанных со временем. В этой логике высказывания также имеют временную привязку – некоторые могут происходить одновременно, другие следовать друг за другом. Другой важной модальной логикой является пространственная логика, которая так же, как и темпоральная, имеет средства выражения пространственных отношений между объектами и высказываниями. Такие высказывания, как «Красный куб находится ближе синего цилиндра», просто формализуются при помощи пространственной логики и очень сложно при помощи аристотелевой. Существуют логики и иных модальностей, но не каждая из них общеприменима, а некоторые эффективны только для каких-либо узких проблемных областей.
Описанные модальные логики имеют важнейшее практическое применение в рамках так называемого пространственно-временного вывода. Чаще всего этот вариант машинного вывода используется в робототехнике, поскольку именно роботы (не только человекоподобные автономные, но и производственные манипуляторы) должны ориентироваться в пространстве и времени. Но также пространственно-временной вывод используется в сложных проблемных областях, в которых требуются рассуждения о том, что было или будет. Чаще всего такие проблемные области относятся к динамическим системам различной природы. В качестве примера можно привести медицину – динамика развития заболевания должна рассматриваться через призму временных отношений, а потому использование временной модальной логики неизбежно.
Важнейшим свойством символьных вычислений является возможность объяснить вывод, полученный при помощи них. Если есть начальные факты, есть последовательность рассуждений и есть множество правил вывода, то можно объяснить, почему из начальных фактов были получены такие-то результаты. Это очень важное свойство интеллектуальных систем, и оно в большей мере соответствует нисходящему подходу в построении искусственного интеллекта.
Раздел 2.2. Искусственные нейронные сети
Искусственная нейронная сеть – это в первую очередь математическая модель машинного обучения, которая решает задачи примерно по тем же принципам, что и биологические нейронные сети, состоящие из нервных клеток. Искусственные нейронные сети имеют программную или аппаратную реализацию, поэтому чисто абстрактная математическая модель воплощена в действительности в виде вычислительной системы. В то же самое время искусственные нейронные сети представляют собой самую широко распространённую модель машинного обучения и одновременно с этим являются типичным подходом в рамках восходящего искусственного интеллекта.
Искусственная нейросеть состоит из множества взаимодействующих друг с другом искусственных нейронов, чаще всего собранных в слои так, что нейроны одного слоя получают информацию только от нейронов предыдущего слоя и передают информацию на следующий слой. Сам по себе искусственный нейрон представляет собой
Первую модель искусственного нейрона предложили Мак-Каллок и Питтс в 1943 году. Эта модель выглядит следующим образом.
Чаще всего в качестве упрощения считается, что входные переменные