Результат функции суммирования передаётся на вход функции активации. В свою очередь, её результат является выходом нейрона
Со времён, когда первые разработчики искусственных нейронных сетей сделали свои первые искусственные нейросети, были созданы многочисленные модификации модели, которые подходят для решения более специфичных задач. Конечно, для погружения в теорию искусственных нейросетей необходимо читать специализированную литературу и изучать курсы, но здесь можно кратко охарактеризовать многие интересные модели и решаемые ими задачи. Так что начнём…
Несомненно, первой реализованной моделью искусственной нейронной сети был перцептрон Ф. Розенблатта, который тот предложил в 1957 году. Эта модель была реализована «в железе», первым в мире «нейрокомпьютером» стал компьютер Марк-1, построенный под руководством Розенблатта в 1960 году. Перцептрон – это простая нейронная сеть с тремя слоями: входным, скрытым и выходным. Таким образом, перцептрон реализует простейшую кибернетическую машину с сенсорами (слой входных нейронов), управляющим устройством (слой скрытых нейронов) и аффекторами (слой выходных нейронов). В перцептроне используется пороговая передаточная функция и прямое распространение сигнала. Как математическая модель перцептрон уже был достаточно мощным формализмом для решения большого количества задач, поскольку он на основе обучения позволял классифицировать, кластеризовать и прогнозировать, т. е. решать большинство классических задач машинного обучения. Впрочем, после публикации книги М. Минского и С. Паперта «Перцептроны», в которой авторы показали принципиальную невозможность для перцептрона решить некоторые задачи (сюрприз – задача «XOR», традиционно включаемая в класс нерешаемых перцептроном, на самом деле к таковым не относится), постепенно интерес к перцептрону снизился, и большее внимание стала получать нисходящая парадигма в искусственном интеллекте, при этом сам Марвин Минский был её оппонентом. Тем не менее сегодня с развитием математического аппарата и средств вычислительной техники интерес к перцептрону и его расширениям вновь вырос.
Однослойный перцептрон
Классический перцептрон
Необходимо отметить, что в процессе развития перцептронов появились некоторые расширения первоначальной модели, предложенной Ф. Розенблаттом. Самый простой классификатор основан на подсчёте слоёв в перцептроне: однослойный, с одним скрытым слоем (классический) и многослойный. Все эти типы были в своё время описаны Розенблаттом. Другая авторская классификация включала: элементарный перцептрон, простой перцептрон, перцептрон с последовательными связями, перцептрон с перекрёстными связями, перцептрон с обратными связями, перцептрон с переменными связями. Первые три класса были описаны самим автором, а следующие три развиты в дальнейшем при детальной проработке модели искусственных нейронных сетей.
Многослойный перцептрон
Из-за первоначальной неразберихи в терминологии и повышенных ожиданий, которые появились в отношении перцептрона и модели искусственного нейрона, Дэвидом Румельхартом был предложен новый класс перцептронов, которые сейчас называются «многослойными перцептронами Румельхарта» и отличаются от многослойных перцептронов Розенблатта тем, что для обучения в них используется метод обратного распространения ошибки, в то время как у Розенблатта использовался метод коррекции ошибки. Есть ещё несколько отличий, в частности у Румельхарта в качестве функции активации используется сигмоида, а число обучаемых слоёв больше одного.
Фактически перцептрон – это самый простой пример нейронной сети прямого распространения. Другим интересным примером является сеть ELM, экстремальная обучающаяся машина. В этой нейросети нейроны не располагаются в слои, а связаны друг с другом случайным образом. Выделяются только входной и выходной слои, а остальные нейроны находятся между ними и связаны друг с другом именно случайно. Обучение сети также производится методом обратного распространения ошибки. А вот если обучение производится при помощи обновления состояния нейронов по результатам наблюдения за их работой, за порядком активации, то это уже нейронная эхо-сеть, ESN.