Читаем Искусственный интеллект. Что стоит знать о наступающей эпохе разумных машин полностью

Несмотря на кажущуюся простоту таких механизмов, результатом их одновременного и постоянного использования в широком масштабе является чрезвычайно адаптивное поведение, которое нам кажется весьма разумным. AlphaGo – ИИ от Google, играющий в го, – обучился своим выигрышным стратегиям, изучив миллионы прошлых партий, а затем сыграв с различными версиями самого себя миллион последующих партий. Это впечатляющее достижение. Тем не менее стоит лишь разобраться в скрытом механизме, лежащем в основе ИИ, как возникает чувство разочарования. Системы ИИ генерируют адаптивное и целенаправленное поведение без потребности в самосознании, а ведь именно его мы обычно считаем признаком «настоящего» интеллекта. Лавлейс может отклонить предложения ИИ как неоригинальные, но пока философы продолжают спорить, область ИИ продолжает двигаться вперед.

<p>Новый способ мышления</p>

Использование в ИИ подхода, основанного на больших данных, теперь близко к внедрению во все сферы нашей жизни, перестав ограничиваться только лишь интернет-магазинами.

Например, Институт судебных экспертиз Нидерландов в Гааге через месяц после выступления Рашида воспользовался системой машинного обучения для поиска подозреваемого в убийстве, который в течение 13 лет скрывался от полиции. Программа смогла проанализировать и сравнить колоссальные объемы образцов ДНК, что потребовало бы колоссального времени для выполнения вручную.

Также к машинному обучению прибегают страховая и кредитная отрасли, используя алгоритмы для создания профилей рисков отдельных лиц. Медицина обращается к статистическому ИИ для сортировки наборов генетических данных, слишком объемных для анализа человеком. Watson (IBM), DeepMind (Google) и подобные им системы могут диагностировать болезни. Анализ больших данных позволяет увидеть то, что мы зачастую упускаем. Такой ИИ может узнать нас даже лучше, чем мы сами. Но для этого потребуется принципиально новый способ мышления.

В период зарождения ИИ высоко ценилось понятие «объяснимость», то есть способность системы показать, как именно она пришла к определенному решению. Когда система символического мышления на основе правил делает свой выбор, человек может отследить всю логическую цепочку и понять «ход мыслей» ИИ.

И все же логические выводы, к которым приходит современный ИИ, основанный на больших данных, представляют собой сложный статистический анализ огромного количества точек данных. Это означает, что мы отказались от «почему» в пользу «что». Даже если технический специалист с высокой квалификацией постарается воспроизвести логику выполнения, на выходе может получиться нечто бесполезное. По словам Криса Бишопа из Microsoft, мы не сможем понять, почему система принимает именно это решение, поскольку в своем решении она не руководствуется набором правил, понятных для человека. Но, по его мнению, это достойный компромисс для получения работающей системы. Ранние искусственные «умы» могли быть прозрачными для человека, но они терпели неудачу. Многие критиковали новый подход, однако Бишоп и другие уверены, что пришло время перестать ждать от системы человеческих объяснений. «Объяснимость – это социальное соглашение, – говорит Нелло Кристианини. – Когда-то давно мы считали, что это важно. Сейчас же мы решили иначе».

Питер Флэч из Бристольского университета пытается научить этому принципиально новому образу мышления своих студентов с направления информатики. Программирование – это абсолют, а машинное обучение является в нем степенью неопределенности. Он считает, что нам стоит проявить больше скептицизма. Например, если Amazon рекомендует вам книгу, то он делает это благодаря машинному обучению или лишь потому, что данные книги плохо продаются? А когда Amazon говорит, что похожие люди купили такие книги – что именно система имеет в виду под «похожими людьми» и «такими книгами»?

Крупные ставки

Опасность скрыта в том, что мы перестаем задавать вопросы. Сможем ли мы настолько привыкнуть к сделанному за нас выбору, что перестанем это замечать? Теперь, когда интеллектуальные машины начинают принимать непостижимые решения по ипотечным кредитам, диагностике болезней и виновности в совершении преступлений, ставки становятся еще выше.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже