Читаем Искусственный интеллект. Что стоит знать о наступающей эпохе разумных машин полностью

Нейронные сети – это больше, чем сумма своих компонентов. Они состоят из множества простых элементов – искусственных нейронов. «Вы не можете указать на какую-то конкретную область в сети и сказать, что весь интеллект запрятан там», – говорит Зрихем. Но из-за сложности соединений нейронов невозможно проследить шаги, которые выполняет алгоритм глубокого обучения для достижения нужного результата. В таких случаях сама машина действительно больше похожа на оракула, а ее результаты принимаются на веру.

Для наглядной демонстрации своей точки зрения Зрихем с коллегами создал образы глубокого обучения в процессе работы. По их мнению, подобная техника похожа на функциональную МРТ для компьютеров, поскольку фиксирует активность алгоритма в процессе решения какой-то задачи. Подобные образы позволяют исследователям отследить различные этапы работы нейронной сети, включая тупиковые ситуации.

Чтобы получить нужные динамические образы, команда поставила перед нейронной сетью задачу – сыграть в три классические игры Atari 2600: Breakout, SeaQuest DSV и Pac-Man. Пока алгоритм проходил каждую из игр, ученые смогли сделать 120 000 снимков. Затем они разметили данные, используя технику, позволяющую сравнивать одинаковые моменты при повторяющихся попытках в игре.

Результаты похожи на сканы головного мозга человека (см. рис. 2.1), но каждая точка представляет собой снимок одной игры в отдельный момент времени. Различные цвета показывают, насколько успешно действовал ИИ в данный момент игры.

Возьмем, например, Breakout. Здесь игрок с помощью ракетки и мяча должен пробить дыру в «стене» из ярких блоков. На одном из снимков команда исследователей смогла обнаружить четкую область в форме банана. Эта область повторялась каждый раз, когда алгоритм пытался пройти через пробитый туннель из блоков, чтобы закинуть мяч на вершину – успешная тактика, которую нейронная сеть придумала самостоятельно. Анализ этапов прохождения игры позволил исследователям проследить использование алгоритмом различных тактик для победы в игре.

Создание идеальной игровой стратегии – это, конечно, интересно. Но такие сканы помогут нам отточить эффективность алгоритмов, предназначенных для решения реальных задач. Например, наличие изъянов в алгоритме информационной безопасности означает, что при определенных ситуациях систему можно будет легко обмануть, или же алгоритм для одобрения заявки на банковский кредит может выказывать предвзятость к определенной расе или полу. При использовании данной технологии в реальном мире нужно четко понимать, как все работает и что может пойти не так.

Символы наносят ответный удар

Нет сомнений в том, что машинное обучение через нейронные сети имело ошеломительный успех. И все же оно не идеально. Обучение системы для выполнения конкретной задачи происходит медленно, к тому же система не может повторно использовать полученные знания для выполнения другой задачи. От этой проблемы страдает весь современный искусственный интеллект. Компьютеры могут обучаться и без нашего руководства, но приобретаемое таким образом знание совершенно бесполезно за пределами решаемой задачи. Они подобны детям, которые, научившись пить из бутылочки, не понимают, что же делать с кружкой.

Рис. 2.1. Результат «сканирования мозга» нейронной сети

Мюррей Шанахан с коллегами из Имперского колледжа Лондона пытаются решить эту проблему старомодным способом, при котором техники машинного обучения отходят на задний план. Идея Шанахана – воскрешение символического ИИ и объединение его с современными нейронными сетями.

Символический ИИ так и не смог достичь успеха, поскольку описание всего необходимого ИИ вручную оказалось непосильной задачей. Современный ИИ смог преодолеть эту трудность, обучаясь собственным представлениям о мире. Однако эти представления невозможно передать в другие нейронные сети.

Работа Шанахана направлена на то, чтобы реализовать передачу определенных знаний между задачами. Награда этой разработки – ИИ, который быстро учится и требует меньше данных о мире. Андрей Карпати, исследователь машинного обучения в OpenAI, написал в своем блоге: «Вообще-то мне не нужно несколько сотен раз разбивать машину об стену, чтобы научиться медленно избегать столкновения».

<p>Высший образ мышления</p>

Если мы хотим создать компьютер с интеллектом человека, то почему бы не создать искусственный мозг? В конце концов, люди – это наша лучшая иллюстрация разумности, а нейробиология дает нам множество новых знаний о принципах хранения и обработки информации.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже