Читаем Искусственный интеллект на службе бизнеса полностью

Отличная сфера для проверки совместной работы – прогноз платежеспособности заемщиков. Ученые-экономисты профессор Дэниел Паравизини и Антуанетта Шоар после введений новой системы рейтинга кредитоспособности проверяли оценку центрального банка Колумбии в отношении подавших заявку на кредит на организацию малого бизнеса[63]. В компьютерную систему ввели разнообразную информацию о заявителях, и она выдала оценку предполагаемого риска. Затем сотрудники кредитного комитета банка сопоставляли эти результаты с собственными предположениями и одобряли, отказывали или передавали заявку региональному руководству.

Порядок рассмотрения машинного прогноза до или после вынесения решения определялся не распоряжением менеджеров, а рандомизированным контролируемым испытанием. Таким образом можно было научно обосновать влияние рейтинга на принятие решения. Одной группе сотрудников его сообщили непосредственно перед их встречей для вынесения решения (аналогично первому способу сотрудничества людей и машин, в котором люди выносят решения на основании машинного прогноза). Другой группе о рейтинге не говорили, пока они не закончили работу над собственным анализом (пример второго способа, в котором прогноз помогает следить за качеством решений, принятых людьми; разница между способами состоит в том, как люди принимают собственное решение – на основании прогноза или без него).

Рейтинг принес пользу в обоих случаях, но все же она оказалась гораздо большей, когда информацию предоставляли заранее. Комитет выносил оптимальные решения и обращался за помощью к руководству реже, благодаря прогнозу сотрудники располагали достаточно полным объемом информации.

У второй группы, участникам которой рейтинг сообщали после того, как они дадут свою оценку, тоже улучшилось качество принятых решений, потому что прогнозы помогли руководству контролировать их работу. У сотрудников появился стимул стремиться к высокому качеству решений.

В прогностической паре «человек – машина» для улучшения прогнозов требуется понимание пределов возможностей обоих. В примере с заявками на кредит люди склонны к смещенным прогнозам или прилагают недостаточные усилия. Машинам же может не хватать информации. В коллективах часто делается упор на командную работу и сплоченность, но работа машины и человека бок о бок пока непривычна. Чтобы людям удалось улучшить качество прогнозов машин и наоборот, важно знать слабые стороны тех и других и строить их совместную работу таким образом, чтобы они компенсировали недостатки друг друга.

Прогноз исключений

Одно из основных преимуществ прогностических машин заключается в возможности экономии на масштабе. Минус же их – в том, что они не умеют прогнозировать необычные ситуации с недостаточным количеством прецедентов. Если сложить то и другое, получается, что сотрудничество людей и машин оптимально для «прогноза исключений».

Как мы уже говорили, прогностические машины учатся на больших объемах данных, накопленных для привычных, часто встречающихся ситуаций, и в таких случаях они не требуют участия человека. Но как только появляются исключения – нестандартные ситуации, – подключаются люди и вносят свой вклад в качество и точность прогноза. Пример с кредитным комитетом центрального банка Колумбии как раз и есть такой «прогноз исключений».

Это название происходит от метода «управление исключениями». В прогностике человек во многих смыслах становится руководителем машины. У него много сложных задач; для экономии времени нужно наладить работу машины так, чтобы она требовала внимания только в случае необходимости. Если непосредственно контактировать с машиной можно нечасто, значит, один человек без затруднений использует ее преимущества для рутинных прогнозов.

На прогнозе исключений основан первый продукт Chisel (его мы упоминали в начале главы): он использовался для распознавания конфиденциальной информации, подлежащей редактированию в документах. Необходимость в трудоемкой процедуре возникает во многих юридических ситуациях, когда документ оглашается третьим сторонам или публично при условии частичного сокрытия информации.

Для первичной обработки текста в редакторе Chisel применялся прогноз исключений, когда пользователь может выбирать усиленный или легкий режим[64]. В усиленном режиме порог предполагаемой для скрытия информации выше, чем в легком. Например, если вы беспокоитесь, что редактор пропустит конфиденциальную информацию, то выбираете усиленный режим, а если нужно раскрыть максимум информации – настраиваете слабый. У Chisel удобный для просмотра и подтверждения результатов интерфейс. Иными словами, машинная редакция выдавала скорее рекомендательный, чем окончательный вариант. Последнее слово оставалось за человеком.

В продукте Chisel предпринята попытка преодолеть недостатки человека и машины с помощью их сотрудничества. Машина работает быстрее и обеспечивает логичный подход, а человек вмешивается, если у нее недостаточно данных для составления точного прогноза.

Выводы

Перейти на страницу:

Все книги серии МИФ. Бизнес

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература