Читаем Искусственный интеллект на службе бизнеса полностью

Представьте, что у вас заболела нога и вы пошли к врачу. Он осмотрел вас, сделал рентген, взял анализ крови, задал несколько вопросов – собрал входные данные. С их учетом, а также опираясь на полученные во время обучения знания и опыт лечения пациентов с похожими симптомами (обучающие данные и данные обратной связи), врач делает прогноз: «Скорее всего, у вас мышечные судороги, хотя есть и небольшая вероятность тромба».

Суждение осуществляется одновременно с анализом. Врач принимает во внимание и другие данные (в том числе интуицию и опыт). Если предположить мышечные судороги, то для выздоровления вам нужен покой. Если же симптомы указывают на тромбоз, необходимо другое лекарство без долговременных побочных эффектов, но у большинства пациентов его прием сопровождается незначительным недомоганием. Если врач ошибется и предложит лечить мышечные судороги лекарством от тромбоза, то вы зря пострадаете от несущественных побочных эффектов. Если же у вас тромб, а доктор пропишет вам отдых, вас могут ждать более серьезные последствия вплоть до фатальных. В суждении сопоставляются положительные и отрицательные стороны всех возможных результатов, являющихся следствием как верных, так и ошибочных решений (в данном случае это исцеление, побочные эффекты и серьезные осложнения). Определение положительных и отрицательных сторон всех возможных результатов необходимо, чтобы выбрать между медикаментозным лечением (которое принесет временный дискомфорт, зато снизит риск серьезных осложнений) и покоем.

Применив суждение к прогнозу, врач решает, вероятно с учетом вашего возраста и исходя из возможных рисков, назначить вам покой для лечения мышечной судороги, несмотря на минимальную вероятность тромбоза.

Далее следует действие – назначение лекарства и отслеживание результата: ушла ли боль в ноге, и не появились ли другие симптомы. Свои наблюдения врач сможет использовать для последующих прогнозов.

Разбивая решение на составляющие, мы получаем четкое представление о том, ценность какой деятельности человека снизится, а какой – повысится в результате внедрения машинных прогнозов. Что касается собственно прогнозов, то очевидно, что машины в целом справляются с ними лучше человека. И поскольку машины все чаще делают прогноз вместо людей, ценность человеческих прогнозов снижается. Но главный вывод в том, что прогноз представляет собой ключевой, но не единственный компонент любого решения, в остальных (суждение, данные и действие) уверенное преимущество остается за человеком. Составляющие решения дополняют прогноз, то есть их ценность повышается с его удешевлением. Например, мы готовы приложить усилия к вынесению суждения в случаях, когда раньше предпочитали не решать что-либо (то есть принимали все по умолчанию), потому что прогностические машины делают прогноз лучше, быстрее и дешевле. Вот почему спрос на суждения человека растет и продолжит расти.

Утрата знаний

Чтобы стать водителем знаменитых лондонских черных такси (Black Cab), претенденты проходят тест. Проверяется их знание тысяч мест и улиц города и – самое сложное – умение прогнозировать кратчайший или быстрейший путь между любыми двумя точками в любое время суток. Трудно представить себе объем такой информации даже для маленького города, а Лондон огромен. Он состоит из множества районов, которые раньше были отдельными городами и деревнями, но за последние две тысячи лет срослись в гигантский мегаполис. Чтобы пройти тест, будущий водитель должен правильно ответить на все вопросы. Неудивительно, что в среднем для этого требуется три года, и все это время необходимо не только изучать карты, но еще и кататься по городу и все запоминать. Пройдя тест и получив зеленый значок, таксист становится кладезем знаний[65].

Уже понятно, к чему мы клоним. Десять лет назад знания лондонских таксистов были их конкурентным преимуществом, никто не мог сравниться с ними по качеству услуг. Даже если можно было дойти пешком, люди садились в такси, потому что водители знали дорогу лучше. Но пять лет назад простейшие мобильные GPS-устройства (или спутниковые навигационные системы) дали всем водителям доступ к данным и прогнозам, которыми раньше владели только таксисты. Сейчас любой получает эти преимущества бесплатно в мобильном телефоне. Заблудиться просто невозможно, каждый знает кратчайший путь. А телефоны обошли преимущества такси, потому что в реальном времени обновляют информацию о загруженности дорог.

Таксисты три года корпели над сдачей теста, не подозревая, что им придется состязаться с прогностическими машинами. Они «загрузили» карты в собственную память и протестировали маршруты, а если чего-то не знали, такие проблемы компенсировались смекалкой. Сейчас у навигаторов есть доступ к тем же картам, а алгоритмы и прогностическое обучение позволяют им в любой момент выбрать оптимальный маршрут с учетом прежде недоступных таксистам данных по обстановке на дорогах.

Перейти на страницу:

Все книги серии МИФ. Бизнес

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература