Читаем Искусственный интеллект на службе бизнеса полностью

• Люди, в том числе профессионалы в какой-либо области, в определенных условиях неспособны давать точный прогноз. Они часто переоценивают очевидное и не учитывают статистические свойства. Эти несовершенства подтверждены многочисленными научными исследованиями; на них построен сюжет художественного фильма «Человек, который изменил все».

• В прогностике машины и человека есть свои сильные и слабые стороны. Машины постоянно совершенствуются, что требует изменений в сфере разделения труда. Прогностические машины лучше людей анализируют сложные взаимодействия между разными признаками, особенно при наличии большого объема данных. Поскольку многоплановость таких взаимодействий возрастает, способность человека к составлению точных прогнозов снижается по сравнению с машинами. Однако человек превосходит их в случаях, когда понимание происхождения данных дает прогностическое преимущество, особенно при скудном объеме данных. Мы классифицировали условия прогноза (известные известные, известные неизвестные, неизвестные известные и неизвестные неизвестные) для удобства выбора подходящей схемы разделения труда.

• Прогностические машины позволяют экономить на масштабе. Цена за единицу прогноза падает с повышением частоты прогнозов. С человеческими прогнозами все по-другому. Однако люди придерживаются когнитивной модели всего происходящего в мире и поэтому могут делать прогнозы исходя из ограниченного объема данных. Это предвещает распространение «человеческого прогноза исключений», поскольку прогнозы машин по большей части основаны на рутинных данных о регулярно повторяющихся событиях, а в нетипичных ситуациях машина не способна на точный прогноз – и тогда ей требуется помощь человека. Человек обеспечивает прогноз исключений.

Часть II. Принятие решений

Глава 5. Анализ решений

Под принятием решений обычно подразумевают нечто важное: покупать ли дом, куда пойти учиться, вступать ли в брак. Несомненно, что такие шаги играют в жизни важную роль, но раздумывать над ними приходится нечасто.

Мы постоянно совершаем менее значимый выбор: остаться ли сидеть в кресле, продолжать ли идти вперед по улице, оплачивать ли ежемесячный счет. Как утверждала популярная канадская группа Rush в гимне свободе воли, «если отказываешься принимать решения, это тоже решение». Большинство мелких решений принимаются автоматически, как правило, по умолчанию, чтобы сохранить ресурсы для важного выбора. При этом решить ничего не решать – тоже решение.

Принятие решений лежит в основе любой деятельности. Школьные учителя решают, как учить детей, каждый из которых обладает собственной индивидуальностью. Менеджеры решают, кого нанимать в команду и кого повышать. Работники жилищно-эксплуатационных контор решают, как поступать в случае протечки канализации или угрозы безопасности жильцов дома. Водители грузовиков решают, что делать, если перекрыта трасса или произошло ДТП. Полицейские выбирают, как действовать по отношению к подозрительным личностям или при поступлении сигнала об опасности. Врачи решают, какое лекарство прописать, когда и как его назначать, какие необходимы медицинские обследования. Родители решают, сколько часов в день дети могут проводить за компьютером.

Такие решения, как правило, приходится принимать в условиях неопределенности. Учитель не знает наверняка, станет конкретный ребенок учиться лучше по одной или другой методике. Менеджер не уверен, насколько хорошо будет работать нанятый им сотрудник. Доктор неточно знает, необходимо ли дорогостоящее обследование. Все люди вынуждены прогнозировать.

Но прогноз – не решение. Чтобы принять решение, следует вынести суждение о прогнозе последующих действий. До недавнего прогресса машинного интеллекта данное разделение этапов интересовало только ученых, потому что люди всегда прогнозировали и судили одновременно, но сегодня развитие машинного прогнозирования привело нас к необходимости выяснить анатомию решений.

Анатомия решений

Влияние прогностических машин ощутимее всего на уровне решений. Но у них еще шесть ключевых составляющих (рис. 5.1). Когда кто-то (или что-то) принимает решение, то использует входные данные из окружающей обстановки, позволяющие сделать прогноз. Этот прогноз стал возможным вследствие обучения, из которого известно об отношениях между разными типами данных и о том, какой из них ближе всего к рассматриваемой ситуации. Объединив суждение о ней с прогнозом, принимающий решение выбирает действие. Оно ведет к результату (положительному или отрицательному). Результат есть следствие решения, он необходим для завершения картины. Также результат дает обратную связь, полезную для улучшения последующих решений.


Рис. 5.1. Анатомия решений


Перейти на страницу:

Все книги серии МИФ. Бизнес

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература